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Preface

This volume, the second of three volumes which examine the noise
attenuation value of a flexibly-supported bearing, is divided
into two parts:

Part I - Attenutation of Rotor Unbalance Forces
By Flexible Bearing Supports

Part II - Unbalance Response Of A Uniform Elastic
EoEor, Supgorgea In ﬁEﬁpea EIexI§Ie;§Eariqgg

The other two volumes complete a study aimed specifically at an
investigation into the effect of a hydraulically supported, -
tilting-pad, journal bearing on the attenuation of noise origi-
nating from rotor unbalance. Volume 1, S%rigg and Damping
Coefflcients For The Tilting-Pad Journal Bearing, provides an
analytical method for determining the spring and damping
properties of the bearing oll-film with the results presented
in curves for typical tilting-pad bearing geometries. The

third volume includes (1) a generalized-rotor analysis and
(2) experimental results.

Mechanical Technology Incorporated was primarily responsible

for the analytical portion of this study - while Westinghouse
Electric Corporation designed and conducted the experimental

test.
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ABSTRACT

This report is concerned with the attenuation of the force transmitted

by an unbalanced rotor. The attenuation is achieved by & flexible bearing
support. The report presents an analysis of the unbalance vibrations

of a flexible, symmetrical, two-mass rotor supportedin fluid film bearings
which in turn are mounted in flexible supports. The fluid film in the
bearings possesses both flexibility and damping. The analysis takes into
gccount both static and dynamic rotor unbalance and gives results for the
rotor amplitudes and the transmitted force as functions of the system
parameters. The analysis has been programmed for a digital computer and

a description of the two computer-programs is included. Numerical results

have been obtained and are summarized in 24 design charts.



LINTRODUCTION

Among the principal noise sources on board a ship are the vibrations trans-
mitted from the various pieces of rotating machinery such as the main pro-
pulsion unit, the auxiliary machinery, etc. In attempting to reduce the
transmitted vibrations two general approaches are available:

a) eliminate the causes responsible for the generated noise by

better rotor balancing, closer manufacturing tolerances, etc.
b) attenuate the noise by means of vibration isolation

Experience has shown that the former approach yields, at best, moderate

gains due to the limitations imposed by practical considerations. Hence,
increased attention is given instead to the possible methods of vibration
isolation. A key consideration in the application of this approach is to
attenuate the noise as close to its source as feasible and prevent the vibra-
tions from setting too heavy masses in motion. This may be accomplished by

mounting the bearing housings on flexible supports.

It is the purpose of this report to present an analysis of the noise atten-
uating characteristic of a flexible bearing support. Specifically the analysis
establishes the equations for determining the support stiffness which will
achieve a desired noise attenuation. The analysis takes into account the
flexibility of the rotor, the damping and stiffness characteristics of the
bearing film, the mass of the bearing housing and the stiffness and damping

of the support. Both static and dynamic rotor unbalance is considered.

Numerical results have been computed for a wide range of support and rotor
parameters. The results are presented in 24 graphs giving the transmitted
force and the rotor amplitude as functions of the rotor speed. The graphs are
intended to be used for selecting the support parameters (e.g. stiffness) to

achieve a desired noise attenuation over a given speed range.



DISCUSSION

The unbalance which is always present in a rotor gives rise to a dyna-

mical force at the bearings with the same frequency as the speed of the

rotor. Some attenuation of the force takes place in the bearings since

the fluid film possesses both flexibility and damping (see Refs 1,2,3, 4

and 5). However, to obtain an appreciable force attenuation it becomes
necessary to vibration isolate the bearings by means of a flexible support
(e.g. a hydraulic support). The magritude of the resulting attenuation depends
on the stiffness of the support and the dynamical characteristics of the
rotor-bearing system. 1t is the purpose of the present report to study

this attenuation and to determine the effect of the parameters of the

system

The system is represented by the model in Fig. 1. It consists of a flexible,
symmetrical, two-mass rctor supported in two journal bearings. Having two
rotor masses makes it possible to ccnsider both static and dynamic rotor
unbalance. Each bearing is mounted on a flexible support with a specified
stiffness and a specified damping. The journal bearing is characterized by
4 spring coefficients and 4 damping cosfficients derived from lubrication
theory (Refs.1,2,3,4,5). The mass of the bearing housing is also included

since it affects the force transmission.

On the basis of the selected model the equations of motion are set up for the
rotor and the support. Because of the large number of parameters it is of
limited value to derive a closed form solution, Instead, the equations are
reduced to a form convenient for numerical evaluation and programmed for a
digital computer. Two computer programs, both for the IBM 1620 computer, have
been written. They are described in detail in the Appendix including instruc-
tions for using the programs. The results from the programs include the force
transmitted to the foundation. the rotor amplitudes and the amplitude of the
bearing housing. Extensive calculations have been performed and the data have
been plotted in Figs.2 tc 25. The employed values of rotor stiffness and weight
and of support stiffness are selected to cover the range normally encountered in

Navy applications. The use of the graphs is explained in the following section.



A study of the graphs reveals that a very significant attenuation of the
transmitted force can be obtained, at least in theory. Note that the
"unattenuated'" force is not shown in the graphs but would appear as a series
of straight lines. They are determined by a simple relationship given in the
following section. However, even small amounts of damping in the support
diminish the attenuation and in practice this is unévoidable. Furthermore,
system resonances tend to become accentuated in a way not found in the con-
ventional construction, e g. the resonance of the bearing housing becomes
important. Therefore, the graphs should serve as a guide line only, they are

not intended to be final design charts.

Since it is known that a flexible support may adversely affect the stability
of the bearing, i.e. the speed a+ onser of oil whip may be lowered, a study
of the stability is also underraken. It is concluded that even if a flex-
ible support does lower the oil whip speed when there is no damping in

the support it takes only a rather small amount of damping to restore, and

even increase the stability limic.



RESULTS

The main purpose of the numerical results (Fig.2 to 25) is to illustrate
the attenuation of the transmitted force due to a flexible support. To
obtain a high attenuation as required in Naval applications the support

is very soft in comparison with the bearing stiffness.

The rotor configuration is shown in Fig. 1. The rotor is symmetric and

consists of two masses M on a flexible shaft. There are two bearings which
are flexibly supported with the support stiffness, KP.
m of the bearing housing is included because the support resonance may be-

In addition, the mass

come important when the stiffness is small. The support damping has been
neglected since it is in general kept small in order to achieve the force

attenuation.
The results are given in form of dimensionless parameters:

dimensionless transmitted force: £—"

wd

dimensionless journal amplitude: m

d

dimensionless rctor mass amplitude: 3

sl

speed ratio:

The rotor-bearing-suppor. parameters are;

bearing stiffness: -C-\-sﬂ
bearing damping: Cw—\vcxz‘
support stiffness: C_\S_ﬁ

support mass: -
v ;zM

- Wda

rotor flexibility parameter: ?— v



where:

\A/ - bearing reaction, lbs.
M - half of the total rotor mass, 1bs.sec2/tn
A

- influence coefficient for rotor (inverse rotor stiffness),
Equation (4), in
lbs.

- distance between rotor masses divided by rotor length,
Equation (5).

§
d - eccentricity of rotor masses, inch
C - radial bearing clearance, inch
W - rotor speed, rad/sec.

w, = h/VFi;. , critical speed of rigidly supported rotor, rad/sec.
m - support mass, 1bs.sec2/in

K} - support stiffness, lbs/in

k;x - bearing stiffness, lbs/in

Cxx - bearing damping coefficient, lbs.sec/in

F - force transmitted to foundation, lbs.

X, - amplitude of rotor mass, inch

X, - amplitude of journal, inch.

The numerical data cover the following range of rotor-support parameters:

= 0,.3, 1,3 ad Io
10 ) 34167, 1077 awd 3007

= 005- Rho‘ 0’5.

Since in the present case the bearing is much stiffer than the support, 1t has

?::

I gRaK

virtually no influence on the results. For completeness the bearing is assigned
the coefficients:

K CooCyr -
e = 375 Cwlar = 4,70

-

which is representative of a 4-shoe tilting pad journal bearing.



Interpretation of the Charts

The data apply to both static and dynamic unbalance such that for static
unbalance f'=l and & corresponds to the first flexural rotor critical speed,
whereas for dynamic unbalance f represents the distance between rotor masses

and ol corresponds to the second flexural rotor critical speed.

In Figs. 2 to 25 two resonances are evident. The first resonance is the

rotor resonance which for a soft support occurs at:

58 ~ CKe
(&),‘ )qufm resonance g w

or in dimensional form:

tadits  (Ist mode)

=

x
System resonanee

=

f”ﬁ odisns (2nd mode)

4
Note that for the second mode the angular restoring stiffness is %‘[ k}
( [ = gpan between bearings) and the transverse mass moment of inertia of the

2
rotor is {(f[) M leading to the stated result for the resonant speed.

The second resonance shown by the graphs is the resonance of the support:

(2) ’.‘.’\/_I"'LEL = \/M___
Whnlsuppert resonence a. - m

or in dimensional form:

W, = éL:jSP = 1 radisns
pPert Fresonane m Am fec

}
where Ai represents the rotor stiffness. Hence, in schematic form Figs. 2

to 25 become:



Y
Transmitied A ,,&’
foree :
FCF
wé

(Ser- - J
53 g
;:I*% :i —= Speed : %ﬁ
. y v
Journal amplitude -'53’-“ + | 31
or a
Rotor mass amplitude: %‘ |
T |
|
l —= Speed : ‘%n

]

CK "_ﬂ

~ g_wz ~ ™
Since the support damping has been neglected the resonance values are very

large in the graphs. However, some damping is always present in the support

and an estimate of the peak amplitude and transmitted force at the rotor

resonance can be obtained from:

E | fE
peak journal amplitude: (%xz)'mr (I-S’cvjvz)wn% = Cw,d
w

peak transmitted force: (%E—)rm = %—'\((a (%I)P“k

In dimensional form:

é__;_{r;m— tnch

n

journal amplitude: (X'Z)yuk

R

transmitcted force: F penk KP (x‘l)puk Lbs

where:

d - support damping, lbs.sec/in



When the rotor is considered rigid and the bearings are also taken to

be rigid the transmitted force becomes:
- . 2
F = EMJO\J lbs. (rigid rotor)

or in dimensionless form:

2‘

%{5 = ;—(%‘) (unkffcnuaftd ‘0"“)

Comparing this value with the values of the transmitted force for a
flexible support the magnitude of the force attenuation can be estimated.
The above '"unattenuated'" force would appear as straight lines with a
slope of 2 in Figs. 2 to 9. There would be a line for each rotor flexi-

bility parameter.



Numerical Example

Let it be desired to vibration isolate a steam turbine rotor with the

following data:

Total weight: 4,400 l1bs.

Transverse mass moment of inertia around CG: I = 1.35-106 1bs.in2

Span between bearings: = 74 inch.
First flexural critical speed: = 25,200 RPM
Second flexural critical speed: = 73,000 RPM

The rotor is approximately symmetrical around the CG so that:

Bearing reaction: W = 2,200 lbs
2
Rotor mass per bearing: M = 2,200 lbs = 5.7 lbs.sec /in.

-/_.L
Wa =Y Ma

the influence coefficient ol 1is calculated as:

From the formula:

2.5"0.‘ fa (1st mode)

3-107" & (2nd mode)

For the second mode the two rotor masses M are separated by the distance (f[ )

where y{ is the rotor span. Thus:
2
HFOM=1
from which: n
= 22635000 _
5= 35V "2%00 = A4T5
For the first mode ¥ =1 by definition.

Setting the radial bearing clearance:

C = 4.10"2 inch

-10-
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the rotor flexibility parameter 1 becomes:

'.37'10_2 (lst mode)

7.3410™ (2nd mode)

These values are outside the range used in the graphs making it‘necessary

to employ a scale factor on the influence coefficient. fhis can be done
because the rotor is very stiff. Hence, if € is multiplied by 7.3 and

13.7 respectively the new values becomes 9 =,1 for both the first and second

mode. The corresponding flexural critical speeds become:
25,200

W = V73

73,000
= V—]_—'st-—';- = 19,700 RPM (by scaling)

9,300 RPM  (by scaling)

In order to select the support stiffness KP it is seen from Figs. 2 to 9

that it is necessary to specify the lowest speed at which attenuation is re-
quired. Then KP must be selected such that the system resonances are well
below this specified speed. 1In the present case it is desired to achieve a

substantial attenuation at 1100 RPM or for use in the charts:

L _ 1,100 _
G = 3300 = 118
@w 1,100
w, = 19,700 -~ -9

The 'unattenuated" transmitted force becomes a straight line in Figs. 2 to 9

determined by: 2 .
iy . 9_)
) - ‘0 (w.
2

(%JE)unaﬂuuded } Sl (‘0-

i.e. a line passing through two points:

((& E) = (10707)  and (07 107)

n! 7
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Ck, -2
It is found that 1&2 100 is the highest value of the support stiffness

which gives attenuation for both modes at 1,100 RPM. From Fig.. 6 (or 7):

actual '"unattenuated" Attentuation

GB ) force force at 1,100 RPM
“ b= 20-og [C281)
for 1,100rpm __ Wd WA lungtien. - Uleg
1lst mode (static unbalance) .118 .01 .135 22.6
2nd mode (dynamic unbalance) .056 .0135 .03 6.9

The actual value of the support stiffness KP is calculated as:

2 2 .
k= ¥ i5° = -;,—2,%!0' = 5,500 &

th
The bearing housing weighs 100 1lbs. Thus:

m 100 - .045 (1lst mode)
F*M T ph2,200

.20 (2nd mode)

Hence, Fig. 6 applies for the first mode and Fig. 7 for the second mode.
However, for the original calculated values of the rotor flexibility parameter

the support resonance is very insignificant.

The journal and rotor amplitudes can be found from Figs. 14 and 22 (or Figs. 15
and 23 for the second mode). Since the rotor is very stiff there is no difference
between the two amplitudes in the speed range of interest, say up to 10,000 RPM.

Still using the scale factor on & the rotor resonances occur at:

_6_3... 032~ 295 RPM (1st mode)
w, 630 RPM (2nd mode)
Let the rotor unbalance be 4 oz.inch per rotor mass, i.e. the rotor eccentricity

d becomes: 5
-3,
§= AL < 13167 inch
[
At speeds above 1200 to 1300 RPM the journal amplitude is practically constant:

.“3"0-3 inch (1st mode)
frxl :I ~ xzz -3
24°107 inch (2nd mode)



Let there by a small damping in the support, given by the damping coefficient d

and assume the value:

= 5o lbs:
d=20 =i

Hence, the peak amplitude at resonance can be calculated from the previously

given formula:

(QZ v';- g'v%’ .":"lo 2 _ 8.95 (1st mode)

J B Cw o720 20 {‘1300 1 42
peak 2300 o 19700 (2nd mode)

In actual values the peak journal amplitude becomes:

8.95
(xz)P“k: 'g' { 40 z ) '0-3 inch

-13-
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ANALYSIS

In order to account for both the first and the second critical speed
and also consider both static and dynamic unbalance the rotor is re-

presented by a symmetrical two-mass rotor:

Rotor Equations

Let the rotor stiffness be described by the influence coefficients daa
and d,p, ., applying at the concentrated masses. The rotor unbalance
is introduced by giving each mass an eccentricity é . Hence, the
equations of motion are

—

(L] (4.4 xz
1) X, = dap, (“ M)?o + Mwld"bs“’t) + dal;(I MF, pa Mw"éwswf) +{§.§l .
where the upper sign applies to static unbalance (first mode) and the
lower sign is for the dynamic unbalance (second mode). Eq.(l) may also

be written:

(2) X,~F%, = —d MS;:, + ol Mwdoswt
©) 5-F5 = ~d My +d Mwrd sinat

with the convention:

daatdal static wnbelance, first mode
4) o=
Aaa = dap dqnam‘c 'uhba.lauu' Second mode
, i £
(5) § - static unpalance, first mode

E d,na»n‘c unbalgnee, Second Mmode



The rigid support critical speed is then given by:

(6) wn= ﬁ:

o
Set:
X (wt
@) X = w‘{fem}
%2
(8) X, = @ {Ed—-z elwil
X3 iwt
€)) X3=we{%*’€”}
and similarly for the y-direction. Substitute into Eq.(2) and (3)
to get: 2
_ oxt (8)
(10) xl - | - (Q )i
wn
. (W
(11) Y = “"——"—‘i_,“’z)
| - (w,,)

Bearing Equations

The rotor is supported in two identical bearings Each bearing is re-
presented by four sprlng coefficients: Kxx/ K,,, ) '(.,,( ) K:,, and four
damping coefficients: Cxx ) cm, ,C;],, Ca,, . A force balance yields:

(12) {[-'- M).7.|+ szJCOS(Dt] = f [).(-, ‘{)-(z] = Rxx (iz‘;3)+dx(§z‘§3)+gy, (‘;;"73)+C,(ql‘q3)
(13) §[ Mq, +Muwtd sinwt] = 5 ] k‘,,, (XZ-X3)+CI,x (x,-xg)ﬂ(.,., (‘h 413)+C”(¢1 -%
Set: -
- CKxx
(14) Kex = Sy
chxx

(15) WG = W



and similarly for the 6 remaining coefficients. Here C 15 the radial

bearing clearance and W is the load on the bearing. Introducing Eqs. (7)
to (10), (14) and (15) into Eqs. (12) and (13) yields:

(16) [Wu—a+ (WG] X, + [kx,+ t'w(m,]qz ~ [ Kot (G ]x, = [K,, + l'w(,,.,] Yy = X

1) DKo+ iwCye )X, + 1Ky =2+ Gy, Dt i Iy~ [y + 0 Gy Ty, = =02

where:

1
o o EC (&)
‘ wa - (@)

Support Equations

The bearing housing is supported flexibly by a spring K} and a dashpot Cp.

Denoting the mass of the bearing housing m the equations of motion are:

(19) h'\):(:s == ‘(P )—(; - Cp )%3 + R;x(;z-)_(:!) + C_xu(>%z ')%3) + '?m, (‘71‘%)"'6)«, (“1.-1‘&3)

and similarly for the y-direction. To make dimensionless set:

C
(20) k= —\5”'
Ce
(21) wad = C—‘\‘,’V“—ﬂ
Cmat . CE m _
(22) W owa M ’y&
Wol
O A v
m
(26) M= PR
Solve Eq. (19) together with Eq.(l6) and (17) to get:
_ 2 (X +1)
@3 % = F BB+ (B wnd
2 (y, ~()

(26) (13 = &-,?(%")2+i(8")w"d

-16-
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System Equations
Combine Eqs. (16), (17), (25) and (26) to get the equations in
their final form:
[kxx + (w(xn-x(|+dxx)] xz + [kx,"'iwcxt"'xdxq]‘h =xr|+du‘id‘\u’]
(27)

with the following abbreviations:

_ Kaex + (G

(28) S = A= B (BY+ (@ )wond
_ lej +{w Cm,

(29) d,“, k- %(8h)z+i(&)wnd
_ Kyx + (@ Gy

N A =Y 1 APy
- kﬂs, L) Cn

(31) Sy = k- A (82t (8, Jond

These equations may be solved for the journal amplitudes X, and y; from which
the rotor amplitudes and the bearing amplitudes can be determined through
Eqs. (10),(11),(25) and (26). The solution is obtained numerically by a
computer.

Singularities

When the rotor speed W is equal to one of the rigid support rotor
critical speeds, i.e. é%L = l,){ becomes infinite. If dx,, &,7 etc.,

are finite Eq. (27) yields:
(32) X, =~

(33) Yp= i

The bearing housing amplitudes are®found through Eq. (19):

_ |+éﬁﬂﬂdw
(34) X3 == ' + ﬁ‘f‘dxx)(l"‘ 67&7) - 6)0] 67:( A= o
| [k=4 (8 )']* (w,d]'+0
_ ,{ _ |+dxx-l31x ] '
(35) s = | | (1% 6xs) (14 84y ) = Sy dyx
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The rotor mass amplitudes are finally given through Eqs. (12) and (13):

(36) X, = --| +? [(K,x+iw(xx)(xz ')(3) + (K,,, + iw&,)(a’, -413)] Y 00

| [h-BRIT+ @ydl*0

Ny = g [ (ot isoCpudloegmxs) + (kg + {wCyg) 1)

If an addition to X=°2, dx,,6x7,67, etc are also infinite the

above equations reduce to:

(38 x'=x2=x3=-| ye oo
* -ﬂ 1‘.: =
(39) Y= Yp=yy= ¢ k ;Lﬁ‘). 0 , w,d=0

so that the amplitude is 180° out of phase with the unbalance while

the center of gravity of the rotor does not move.

Eqs. (38) and (39) are actually also valid even if » o0 as long as
h- %(ﬁ.)z=0 , wad=0,

Transmitted Force
The force transmitted to the bearing housing, denoted FB, is given by:
W (3 -v F (S S = (- _- ]
ng = Kxx()(z“x‘b) + C)u:(xz‘xg) + th’ (‘11‘%)"' C)u’ ("7_""13)
and similarly for the y-direction. Making use of Eqs.(12), (13), (10) and

(11) this equation reduces to:

(40) % Fax = 2(I+x;)
C - .
(41) &R, = %y

The force transmitted to the foundation, denoted F, is given by:

Fv = Kp %*CP%
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which through Eqs. (25) and (26) becomes:
) 2( X2 +1)

(42) L-EF' = 1
WED - e

g;g_ = % (yp=i)
(43) F L ICAN
wd T I -A+l(§ilu"

When ¥(=o°© the above equations become indeterminant. In that case

use the equivalent equatiozs.

(44) %3 Fax = §(x,-x2)

(45) s Foy = (9,

(46) % Fo=[k+ i(ﬁ..)w..d]x3
47 \%5 Fo= [4+1(8)wud]y,
Stability

Since the support flexibility and damping influences the rotor-bearing
stability (oil whip) it is of interest to analyze this effect. To do
this return to Eq. (27) and investigate the eigenvalues of the determinant

of the homogenous equations. Introduce the symbols:

(48) J= %
(49) s= &

where V is the eigenfrequency. Hence, the determinant of Eq.(27)

becomes:

50) [K)(x+ lJ (4)(;)( - (I""dxx)] [Kxa, + I}LUC)(,‘-X dx, ]



where: ( )l
. L

(51) b4 ¢ - (SJ)‘L |

- le'f(chlx
(52) éxx - k- %(S)TL"' [sywhd

_ Koy 40y Cuy
3 Sy~ k- % (5 + i syw.d
Look first at the case where the supports are rigid, i.e. &, = 6,“,: ---=0,

Equate the real and imaginary parts of Eq. (50) to zero to get:
Ky @ Ggy + Koy G — Koy 0 Gy = Kiyy sy

(54) A= ﬁ(u nyﬂ"ﬁ)(”
1= (Ko =3¢} (i = 3¢ ) = Ky Ko

(55) - " S
wc\(x‘d)(q,‘ﬁ)(x,‘d(’k

Substituting Eq. (54) into Eq.(55) allows for computing 3, i.e. the
ratio between eigenfrequency and running speed. Substituting into Eq.(51)
gives the value of SI i.e. the rotor speed at instability as a fraction

of the natural frequency w, .

Next assume the supports to be flexible but without damping, i.e. d=0.

For abbreviation set:

s6) A= k= E(sy)

and the solution becomes:

(57) o = Kxchﬁ +’EL.,rC\)C¥¥ —‘(xg(«)(!x ""(#x@(‘fg
pud
(58) J‘L - (KXX- T:})(Km— i‘?)"kx'ﬂ@ﬁx

Cufxx C\)C” -w(,‘, w(,x

i.e. the eigenfr.equency ratio X is unchanged. To determine the rotor

speed at instability, i.e. § expand Eq. (57):

|

b4 4 % X X
o #ll+e Tl -[h(lw*y,-:;)’fr:?(l*?%)](s,)l-r phi—g =0
which is a quadratic equation in (SI’I. Hence, § can be obtained with
X known from Ey. (58).



It is seen that there are two solutions for the speed ratio § ,
both with the same frequency. One solution corresponds to the
coincidence of the rotor critical speed (including the effect of

the flexible support) with the eigenfrequency K , the other solution
stems from the instability of the pedestal mass. This was checked

numerically as follows:

For rigid support (‘kz °°) we may use Eq. (54) and (55) to determine:

[A)
Y= 5=

where (Jp 1is the threshold speed for rigid support. Let o denote

the corresponding actual critical speed. Then, by hypothesis:

- . Qe,o
wc,o“ v e “'a'):' = (Soy)
Introduce an equivalenr bearing stiffness kb such that:
r _ K
Weo = 'ﬁ%
Hence ,
(Lea)' = Mo K2 = 4 I
w, M B
or
CKa - 2
(60) w ¢ (5,3)

Now introduce rhe support stiffness to get an effective stiffness:

ck, . &

W 4 Ce
w w

(61)

and the corresponding critical speed becomes:

wcz’ - KMs :vz

Therefore, .
Gyl'=2 = ¢S
or
|
(62) 5= y Jg CWK‘

which is the first solution. To evaluate the second solution, equate

the support mass resonance to the eigenfrequency:

KE*I'KB = vz
M
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or: 2 , Ckp 4 Cke
@) = ()= 9 5
Thus: M
C P - CK
|
(63) 52._.7\/9_V§_mi
M

which is the second solution. 1t should be noted that both Eqs. (62)
and (63) are approximate. Their validity has been checked numertcally
for selected cases and the difference was found toc be less than 1 per

cent. Finally when the support includes damping set:

(64) A=k - %‘(S&)z | B= (SJ)w,,d
Eq. (27) becomes:

[k" + l-waux - F)f_f_%a ] [kx."f iwaxt’]

(65) * =(
[ + iyt Gy [y +iaCyy = e ]
For convenience inftroduce:
. o
(66) E-iyF = -
AnB

Expand the determinant of Eq. (65) in its real and imaginary parts:
©8) (K= E )@ CyytF) +( Ky E) (ot F) = Koy wCyx ~ Ky Gy =0

Solve Eq. (68):

(w(\x + F ) + ((A)(t”‘f F)

69 E =
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Set:
(70)  a=Ku - Ky,
(71) b= wly -H«)C.,7

(72) G = K\a] WC‘IX + KLJ)( (A)ny
(73) x=F+1 (‘UC""’ 6\)(77)

Substitute Eq. (69)1to (73) into Eq. (67):
2,1 2
(74) X'x" + [“"‘"’4 q‘(w(,‘, wlyy~w Gy w(,,)+ K,,7 K,,,]x‘-— 3 [ G+$ (w(xrwf,, )] =0

This equation has always two roots, a positive and a negative one. Of these

only the positive one can be used as shown later in Eq. (79).

Thus Eq. (74) and, therefore, Eq. (69) can be solved for F and E as functions
of the frequency ratio X . They may be considered as frequency dependent
eigenvalues such that E represents ''eigen stiffness" and F "eigen damping'.
When F is positive the "eigen damping" becomes negative according to Ee. (66).
Having determined E and F it remains to find the corresponding X -value

from Eq. (66). However, it should first be noted that the two actual un-
known are ¥ and §= ou" . Since\the calculation is performed for a

given Sommerfeld Number S the speed W 1is known and the variable is
therefore wp, i.e. the rotor mass M . For this reason it is convenient

to redefine the pedestal mass and damping as:

. - z-.m.C.wf.. 22( mW
a5 ¢ = Ast = mUl = oms (Srey)
(76) p= swnd = C“’C = S ——(R-s)

Hence, Eq. (66) may be written:

P

(77) E - 1‘3 F = %
. |- &-da’ﬂ'ﬂl

Solve Eq. (77):

h-dy* -
E = x[l+x g ey x]+(,p)‘]

(78)
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B
(79) F= b(z [k_ddz_'x]l_'_(aﬁ)z

Combine the two equations:

(80) w= P /;'_FFM’Q‘!)

Thus, for a range of frequency ratios X with corresponding E and F-values
X can be calculated from Eq.(80). Substituting into the right hand side
of Eq. (79) and subtracting from F gives a difference, designated the
error. Only when the error vanishes has a solution been obtained, i.e.

for a correct frequency ratio.

When the denominator of Eq. (80) has a singularity a false solution occurs
except in the rare case when the numerator is simultaneously zero. For
this purpose it is convenient to have a check on Eq. (80) by solving

Eq. (78):
o [E+h-aplla = [ (kg + (a1 26 (h-¢p) ot + E [(h-gl"+ (1] = 0

or

(82) ¥= m [Uz- éa‘)1+(3/5)2+ 2E( k-&ﬂ ‘-"\/[Uv&a‘)l’f (&/5)1] - 4EY % § }
Hence, there is no root when:

(83) E—Y Eq’-(lz-q‘)z < (J/s) < E+VE- (/z—ad‘)l.

Within the frequency ratio range from 0 to Xrigid (Eq. (55)) there may
be up to three roots for (aga)



1.

CONCLUSIONS

A flexible bearing support provides an ideal method for attenuating
the force transmitted by an unbalanced rotor. It introduces a minimum
of extraneous resonances (namely one, the resonance of the bearing
housing) and in theory the attenuation can be as high as desired by a

suitable selection of the support stiffness.

The damping in the bearing support should be small in order not to

lose the force attenuation.

The rotor amplitude at resonance is relatively high but since it occurs
at low rotor speeds it may not be too important. Otherwise the support

may be locked in passing through the resonant speeds.

Although the speed at onset of oil whip is lowered by the flexible
support, there will always, in practice, be enough damping in the

support to restore the stability.



RECOMMENDATIONS

The purpose of a flexible bearing support is to achieve a desired
attenuation of the transmitted force. However, the use of such a
support raises questions with regards to the response of the rotor
during onboard-ship operation (ship motion, shock etc). An investi-
gation should be undertaken of this problem with special emphasis

on. the actual design of the flexible support. Important factors in

the study should be reliability, low maintenance and simplicity.

Although the unbalance is the principal source of noise in a piece

of rotating machinery, vibrations of other frequencies are also
present and may be important (subharmonic rotor vibrations, electric
field forces, etc.). A study of these vibrations should be performed
both analytically and experimentally.

-26-
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APPENDIX
Computer Programs

The analysis has been programmed for the IBM 1620 digital computer.
Two programs are written: PN 0125 where the bearing pedestals are
assumed rigid, and PN 0132 where the pedestal' flexibility is included.

Separate descriptions of the programs are provided below.

PN 0125: Transmitted Force and Response of a Two=Mass Rotor in
Rigid Pedestals

This program calculates the dimensionless transmitted force and the
rotor amplitude for a symmetrical two mass rotor with a given un-
balance. The rotor is supported in two bearings, each bearing re-
‘presented by 4 spring and 4 damping coefficients. The pedestals

are assumed rigid.

The transmitted force, the journal amplitude and the rotor mass ampli-
tude are functions of the rotor speed W expressed in dimensionless
form by (07&»J where W), is the critical speed of the rigidly
supported rotor. However, for the transmitted force and the journal

amplitude a simplification is possible by use of another variable:

@l
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I
(a) K= — 2 .
¢ 11— (&)
where
(b) g=cﬂ§é{ (rotor flexibilu't, Parametcr)
W - bearing reaction, lbs.
C - radial clearance, inch
4 - influence coefficient for rotor, %%é (see Eq.(4))
f - distance between rotor mass, divided by rotor span
(see Eq. (5))
w, = 4|/h@x cr;;ical speed of rotor on rigid supports,
rad/sec.

M - rotor mass per bearing, lbs-secz/in.



Since ¥ is inconvenient to use directly an equivalent speed ratio

(c) X = '0 '_8(”§)

may be defined by:

By this choice of non-dimensional parameters, a single plot of journal
deflection and transmitted force against equivalent speed ratio will
represent a full range of rotor flexibilities. Since the rotor de-
flection requires the depignation of a particular fleiibility, the

actual speed ratio is computed in this case. However, for large values
of rotor flexibility, a large range of equivalent speed ratio corresponds
to only a small change in actual speed ratio. Therefore, in this case

it becomes advisable to enter the actual speed ratio and so this pro-

vision is made.

The program also performs a stability analysis, providing, for a given
rotor and bearing configuration, the ratio of eigenfrequency to rotor

speed at the onset of instability and the corresponding rotor speed.

The output is provided in a form that makes it adaptable for automatic
plotting on an X-Y plotter, Since it is anticipated that the output
would be represented on logarithmic scales, the logarithm of the re-

sponse values along with a code for automatic sorting is provided.

Computer Input

Card 1 - 49 columns Hollerith - descriptive text
Card 2 - (514, E12.4) - control parameters
Word 1 - type of computation; if this value is:

1. the input speed ratios are intended to be equivalent
speed ratios

2. the input speed ratios are intended to be actual
speed ratios

Word 2 - number of speed ratios, maximum 18

Word 3 - number of rotor flexibility parameters , maximum 10

Word 4 - intermediate output; if this value is 0 - no inter-
mediate output is provided; # O - intermediate output
(diagnostic) is provided.



Card 3

Card 4

Card 5
Card

Word 5 - additional data; if this value is 0 - there is no
additional data; # 0 - additional input data
follows the case being computed.

Word 6 - the value of eccentricity ratio corresponding to
the input bearing parameters.

(6E12.4) -

efficients

(5E6.0)
(6E12.)

Computer output

(6E12.4) -

dimensionless bearing spring and damping co-

in the order CKue ) g—Kﬂl- ; %x ) _C_'fu.) Q‘c\/ﬁm , Cngg

w W w w
the remaining bearing parameters %ngl C‘._“v_s/hs.

the values of the rotor flexibility parameter ?,Eq.(b)

the speed ratios

The initial output is in the order:

program heading

Hollerith text provided as input

input control parameter values

input bearing parameters

Then for the type 1 computation the first output values with appro-

priate headings are, by row

first row

the initial equivalent speed ratio
: 3%
d

the value of the dimensionless parameter x,eq(a)

the maximum dimensionless journal deflection

a column of signs (+ 1) corresponding to the
sign of the log of the speed ratio and pro-
vided for the automatic plotting facility.

the log of the speed ratio
the sign of the log of the response value
the log of the response value

a code value for automatic sorting

-30-



- second row - the same as the first row, but with the speed
ratio the actual speed ratio, the deflection
the maximum rotor mass deflection, and the third
value the value of rotor flexibility used in the
computation.

- third row - the third row is the same as the second row but
for a second value of rotor flexibility, if more
than one is provided. Then the additional rows

correspond to any additional flexibility values.

- last row - the last row is similar to the above, with the speed
ratio the equivalent speed ratio and the response
value the dimensionless transmitted force %&F
(maximum value).

From Equation (a) it can be seen that
(%)‘ - Xo
n I+3g
and so there is no real solution to éi for values of ¢ between O
and -1, For those cases the program prints the message ''no solution for
"

kappa - rho between O and -1 for rho = . . Then the program proceeds

to the next value of ?-

The last output is the results of the stability analysis. It consists
of three values:

first value - the flexibility parameter, ¢

second value - the speed ratio of the threshold of instability, ﬁi

third value - the square of the ratio of eigenfrequengy to running
speed at the threshold of instability , z5

The output for the type 2 computation is much like that of the type 1
with the exception that, since the equivalent speed ratio is a function

of both the actual speed ratio and the flexibility parameter, each time

a new 9<-va1ue is specified for a given actual speed ratio, the equivalent
ratio changes and requires a new journal deflection and transmitted force
computation. Therefore, the order of output is: journal deflection, rotor
deflection, transmitted force, then index ? §nd again, journal deflection,

rotor deflection, transmitted force, etc.



PN 0132: Transmitted Force and Response of a Two-Mass Rotor in
Flexible Pedestal

This program calculates the dimensionless journal deflection and trans-
mitted force of a symmetrical rotor supported by two similar bearings with
flexible pedestals as a function of the speed ratio, fg; » where @, is

the flexural critical speed of the rotor simply-supported.

The program also performs a stability analysis, providing, for a given
rotor and bearing configuration, the ratio of eigenfrequency to rotor

speed at the onset of instability and the corresponding rotor speed.

The output is provided in a form that makes it adaptable for automatic
plotting on an X-Y plotter. Since it is anticipated that the output
would be represented on logarithmic scales, the logarithm of the re-

sponse along with a code for automatic sorting is provided.

Computer Input

Card 1.- 49 columns Hollerith ~ descriptive text
Card 2.- (614, E12.4) - control parameters
Word 1 - type of computation; if this value is:
- the program performs the rotor response computation only

- the program performs the stability analysis only

Word
Word

2

3

4 - the program performs both analyses

2 - the number of speed ratios, maximum 18
3

- the number cf non-dimensional pedestal to rotor mass
ratios, i, where p = EF% , maximum 10.

Word 4 - the number of rotor flexibility parameters ¢ , maximum 10

Word 5 - intermediate output; if this value is 0 - no intermediate
output is provided; # O - intermediate output (diagnostic)
is provided.

Word 6 - additional data, if this value is 0 - there is no add- -
itional input data; # 0 - additional input data follows
the case being computed.

Word 7 - the value of eccentricity ratio corresponding to thev
input bearing parameters.
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Card 3. - (6El12.4) - Dimensionless bearing(spring and dam%}n% co-
efficients in the order C—&;‘&,QTV!M, ,9—:‘\1/'1#-, —!'v-vﬁ, %ﬂ
Card 4. - (6E12.4) - the remaining bearing coefficients, and the pedes-
tal parameters; in the order f ’ )
where the parameters are dimensionless as defined in the analysis.
Card 5. - (5E6.0) - the values of the mass ratio ﬂ‘fﬂi
Card - (5E6.0) - the values of the rotor flexibility parameter (4

For a type 3 computation, the above is all the necessary input; other-

wise the following must be provided.

Card - (6El2.4) - the speed ratios (&i)

Computer output

The initial output is in the order:
- program heading
- Hollerith text provided as input
- input control parameter values

- 1input bearing and pedestal parameters

Then for the type 2 computation the next output with appropriate heading
is the value of mass ratio and rotor flexibility, followed by the system
response, in the order
- first row - the initial speed ratio
- the dimensionless journal deflection %;Z (max.value)
- the value of the dimensionless parameter X where
1@y

o =
T

- a column of signs (+ 1) corresponding to the sign of
the log of the speed ratio and provided for the automatic
plotting facility

- the log of the speed ratio
- the sign of the log of the response value

.~ the,log of the response value

a coding value for automatic sorting



value now the dimensionless rotor deflection

- gsecond row -~ the same as the first row, but with the respon%g
and the third value the equivalent speed ratio?i

- third row ~ the same as the first two rows but for the di-
mensionless pedestal deflection %?i (max value).

~ fourth row- the same as the above rows but for the dimensionless
transmitted force Eﬁ%; (max. values).

Then the next speed ratio is indexed and the above four values generated.
When the response for all of the speed ratios are computed, a new rotor
flexibility value is indexed and the above sequence repeated. When all
of the flexibility values are computed a new mass ratio is indexed and

the above process repeated.

For the type 3 computation a heading indicating the stability analysis

follows the input. Then four columns of output as follows:

column 1 - the value of the mass ratio
column 2 - the value of rotor flexibility factor

column 3 - the ratio of running speed to rotor flexural critical
speed at the threshold of instability

column 4 - the square of the ratio of eigenfrequency to running
speed at the onset of instability

For the case where there are two real solutions for the running speed

ratio, they are both given.

For the type 4 computation the output after the listing of the input
values is the type 2 output followed by the type 3 output.
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Fig. 1 Rotor-Bearing-Support System
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NOMENCLATURE
C

Exx 'E-m’ ) C-I’X, 6«,,

Q)Cxx

£
S

~-

Xix1 T T m
N

~
X

-°

“w N W Z 3 T ~~T » X

”;quik‘!"ik'm

66 -

Radial bearing clearance, inch

Bearing damping coefficients, lbs-sec/inch
chxx

, dimensionless bearing damping
coefficient. Similar for WGe,wCy,wly

Pedestal damping coefficient, lbs-sec/inch
Bearing diameter, inch

wpC
=§"#£ i dimensionless pedestal damping

coefficient
Real part of eigenvalue of homogenous equations
Imaginary part of eigenvalue of homogenous equations
Transmitted force, lbs.
X &nd Y-components of transmitted force, lbs.
Bearing spring coefficients, lbs/in.
= € Ko dimensionless bearing spring
coefficient. Similar for k,,.“k.,,,K.,.,
Pedestal spring coefficient, lbs/in.
=§'\5=, dimensionless pedestal spring coefficient
Bearing Length, inch
Rotor span between bearing centers, inch
Half the rotor mass, lbs-secz/in.
Mass of bearing housing, lbs-secz/in.
Rotational speed of rotor, RPS
Bearing radius, inch

NDL 2
=A_\/_\7— (C) , Sommerfeld number

'8" Ratio of speed at instability and rotor
critical speed
s

Time, seconds



1 X g

xl/ﬁz
)?3/%
XY,
X2 Y2
X3, Ys

du J dab

-3

“w < T T ¥ O T

H
$

Sux 1 xy s Syr, Syy
W
Wn

Bearing reaction, lbs.
Amplitude of rotor mass, inch
Amplitude of journal center, inch

Amplitude of bearing housing, inch

- X
-3' ) = % ) Dimensionless amplitude of rotor mass
-_:Eg’.‘.z’:%il) Dimensionless rurplitade of journal center

=§3"‘J ,=£g3, Dimensionless amplitude of bearing housing.

Rotor influence coefficient, first index: amplitude,
second index: force, in/lbs.

= (d“*d.;) for static unbalance, = (daa-o(“) for
dynamic unbalance, in/lbs.
- CwCp
w

Dimensionless pedestal damping coefficient
=% , Ratlo of instability frequency and rotor speed
Unbalance eccentricity of rotor masses, inch

.-.% (aﬂ’n)z/[l— (&2")3] , parameter

Lubricant viscosity, lbs-sec/in2

Dimensionless bearing housing mass

g E

}
Journal eccentricity ratio in bearing

Instability frequency, rad/sec

= 1 for static unbalance, = ratio of distance between

rotor masses and total rotor length L for
dynamic unbalance.

3

2 rotor flexibility parameter

vy
(Y

~

mw{
W ,dimensionless bearing housing mass

Parameters defined by Eqs. (28) to (31)
Angular speed of rotor, rad/sec.

’VM& ’critical speed of rotor on rigid supports,
rad/sec.
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SUMMARY

The dynamic response of an unbalanced elastic rotor which operates in damped
fluid-film bearings has been investigated. The influence of speed, bearing
operating eccentricity, and of relative stiffness between the rotor and its
bearings have been determined. Results are expressed in terms of rotor maximum
whirl amplitude at several locations on the rotor; and 1in terms of bearing
transmitted force. Particular attention has been given to the influence of
system parameters on critical speeds, and on the attenuation of bearing trans-

mitted force.

The results are presented as charts which facilitate the design of high-speed
rotors by allowing performance characteristics up to and including the fourth
system critical to be determined directly. The analysis is exact, and the influ-
ence of higher modes is included under all operating conditions. Both static

and dynamic unbalance conditions have been considered.
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INTRODUCTION
General

A heavy elastic rotor has an infinite number of critical speeds, but, in practice,
the operating speed range rarely includes more than three or four of these criticals.
These critical speeds and the vibratory form assumed by the rotor are both directly
influenced by the stiffness and damping properties of the supporting structure,

as well as by the distribution of mass, elasticity, unbalance and damping within

the rotor itself.

Little information is presently available on the dynamic response of rotor

systems to unbalance in the higher modes. The major studies which have been

made to date have been concerned with optimising the rotor-bearing system to

achieve maximum attenuation of transmitted force and rotor amplitude in the

lower modes. Lund and Sternlicht (Ref. 1) used a simple rotor in fluid-film bearings
to investigate force attenuation in the fundamental mode for a variety of bearing
types. Warner and Thoman (Ref. 2) extended this work using a two-mass rotor in
partial-arc bearings. This rotor included the influence of the second mede in

the fundamental rotor motions, and, also, provided data on operation at speeds

including the second critical.

In both cases, the simplicity of the rotor precludes any direct extension of this
work to higher modes. However, such information is desirable in order to opti-
mise the steady-state performance of high-speed rotors which operate beyond the
sacond bending critical, and to optimise the system run-up and run-down charac-
teristics. Also, the influence of the higher modes on rotor response in the lower
modes and throughout the speed range is not indicated in presently available data.
Such information is required to enable the most efficient attenuation to be deter-
mined. This information is obtained in the present analysis. Finally, the para-
metric conditions under which stable rotor motions may occur during operation in
the higher modes have not been defined up to the present. A simple extension of

the results given herein would allow this to be done.

Scope of Present Investigation

In the present analysis, the motions of an unbalanced flexible rotor which is



-2~
supported in fluid-film bearings are considered. The rotor is assumed to be of
prismatic shape, and to have its mass and elasticity distributed uniformly along
its length. This distribution makes it possible for the solutions to the result-
ing equations of motion of the system to include the influence of all modes
directly. Rotor internal damping is assumed to be negligible compared with the
damping in the fluid-film bearings. A simple uniform shaft was chosen because

it permits a direct analytical solution to be obtained for all required dynamic
properties of the system including the higher modes. This rotor-bearing system

is not intended to simulate any practical case, but it does indicate certain

dynamic characteristics which are common to all cases.

The motions of the rotor are considered to arise from the action of an unbalance
Wile which is due to the weight of the rotor, W, acting at an eccentricity e,
from the rotor geometric centerline. The unbalance is located at a specified
point along the length of the rotor, and its distance from the left-hand bearing
is included as a variable in the analysis. This is a "static" unbalance. Any
desired condition of dynamic unbalance may also be investigated by suitably
superposing two sets of static unbalance results to represent the dynamic un-
balance couple. This superposition has been included in the analysis, and
dynamic unbalance results have been obtained. The point at which the desired

amplitude or force response occurs is also included as a variable.

The rotor is supported in a hydrodynamic cylindrical fluid-film journal bearing
at either end. The dynamic properties of these bearings are given in Table I.
This bearing type is commonly used in practice. It is considered in the ana-
lysis by Lund and Sternlicht (Ref. 1), and its characteristics are similar to
those of the partial-arc bearing. Thus, this choice of bearing allows a com-

parison to be made between the present and previous work.

The analysis presented here has been programmed and the following results have

been obtained:

1. a. Rotor amplitude at specified stations for a speed range which in-
cludes the fourth rigid bearing critical.
b. Bearing transmitted force for the same speed range.
2. - Rotor mode shape in terms of an optional number of rotor stations for

selected speeds.

PRv—Y



DISCUSSION

Non-Dimensional Parameters

All parameters in the results, Figures 6 through 24, have been made non-dimen-
sional for generality. The parameters and dimensionless ratios used are de-

fined as follows:

1. Notation. Listed at the end of this report

2. Distance ratio, LI/L =& . Defines the axial location of the unbalance

W+ e from the L.H. bearing, with respect to shaft length. Figure 1.

3. Position ratio, Zl/L1° Defines the axial position of any displacement

measurement within Region 1, measured from the L.H. bearing. Figure 1.

4. Position ratio, ZZ/LZ' Defines the axial position of any displacement
measurement within Region 2, measured from the unbalance position.

Figure 1.

5. Speed ratio, m/mc, Ratio of rotor speed w to the fundamental bending
critical speed w, of a uniform rotor in simple rigid end supports. The
speed range covered by the analysis extends to m/u% = 24.0. This includes

the first four rigid bearing criticals.

2 %
For the present rotor system w = L) [El]
L2 pA

where AL is the system characteristic frequency number.

nz EI %

For a rigid bearing uniform rotor « = =% [——

c L2 PA

oy - AL, 2 N
Speed ratio o ) = ‘77) At the rigid bearing critical wﬂ»c = 1.0.
< m

¥

Characteristic number AL = = éi—)
c

2
and )\Ll = (‘f)—;)

2
AL, = (1-&£Hx (ﬁ:)



Flexibility ratio, g. Ratio of the bearing clearance C to the central
deflection of a uniformly loaded simply-supported shaft, §.

Stiffness parameter, v = EIK3'%u Occurs non-dimensionally in the equa-

tions of motion. The relationship between v and % is as follows:
4

Central deflection of simply-supported uniform shaft g = 3%2- 3%%L

Static load per bearing W, = ﬁ%L

Characteristic number AL = = é&_)%

3 3/2
- 3.,C _ 5 G\
Therefore v = EIA W (192 )(8)(wc)

Stiffness parameter is therefore a dynamic deflection ratio, as shaft
stiffness depends on rotor speed. The range of flexibility ratio re-
quired for the analysis was established as follows:

Bearing Fundamental Rotor Shaft Lateral c
Case Clearance C, in. Critical Speed, rpm Deflection,in. o)

Maximum 0.0050 14,000 0.002 30
Minimum 0.0005 4,000 0.015 0.3

The fundamental rotor critical speeds were chosen high in order to apply

to a simply-supported shaft in rigid bearings. Flexible bearing system

criticals will be considerably lower. The g values therefore will apply

to the range for rotor-bearing system fundamental critical speeds. The

above maximum g value therefore applies to a fairly rigid shaft in flex-
ible bearings. The lowest critical speed will tend towards a rigid-body

.critical and will be determined mainly by bearing flexibility and rotor

mass. The minimum value g = 0.3 corresponds to a flexible shaft in

rigid bearings. The lowest critical speed will tend to occur at m/u)c = 1.Q,

determined by shaft flexibility. These facts are of use in analyzing the

results given in Figures 6 through 24

Displacement amplitude ratio, f. Ratio of the maximum rotor displacement

x at a specified station to the unbalance eccentricity e.

Dimensionless transmitted force,'%g. Ratio of the maximum transmitted force

F to the unbalance W : e, normalized by the inclusion of the bearing clear-

ance C.

PSP we—



Bearing Properties

The bearing used in the present analysis is a cylindrical journal bearing.
Dynamic stiffness and damping characteristics are given below in Table I,

derived from Reference 1 in Appendix A of this report.

TABLE 1
Spring and Damping Properties for Cylindrical Journal Bearing, L/D =1

N 0.2 0.5 0.7
K 1.283 2.060 3.59
XX

K 5.492 3.230 3.38
Xy

K -4.610 -1.070 0.02
yx

Ry 2.220 2.040 1.99
C 10.72 6.02 6.23
XX

C 1.950 2.00 1.95
Xy

c 2.290 2.17 2.13
yx

c 9.770 3.40 2.00
yy

S 0.665 0.189 0.081
0, 76.8 57.5 43.3

The cylindrical journal bearing is similar to the partial-arc bearing in opera-
tion because of the presence of cavitation in the film. Thus, the results ob-
tained for the system characteristics are representative for a wide range of
common applications. For systems which employ bearing types with important
differences, such as a tilting-pad bearing, the qualitative aspects of the results

still apply as a guide even though they are not then numerically correct.

Maximum Response Values

Response amplitude and transmitted force results are both given for the maximum
values for these parameters. The method of calculation for both maxima types

is given in the theoretical analysis, Section 3, and a diagrammatic representa-
tion of the component relationships which go to make up the force and displace-

ment maximum values is given in Figure 25 .



Both static and dynamic unbalance characteristics are included in the above re-
sults. Details for Program 1 are given in Figures 6 through 24, and for Program
2 in Figures 26 and 27. All major system variables are expressed in terms

of dimensionless parameters.

The results of the present investigation have been compared with those obtained
using a proven discrete-mass rotor-bearing program. Correlation was good

in all cases. The results are shown in Figure 28.
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THEORETICAL ANALYSIS OF ROTOR MOTIONS

General

The rotor-bearing system shown in Fig. 1 consists of a heavy elastic shaft of
uniform circular cross-section along its length, supported at its ends in
fluid-film bearings. The bearings have stiffness and damping properties in both
x~- and y- directions, and also cross-coupling stiffness and damping between these
directions. Dimensionless values of the bearing stiffness and damping properties

with eccentricity are given in Table 1 for a cylindrical journal bearing.

The shaft considered has an unbalance W-e situated at distance L1 from Z1 = 0.
During rotation, this gives rise to an unbalance force Mewz which rotates in
synchronism with the shaft, causing it to whirl about its stationary equilibrium
position. Shaft motions are restrained by its own inertia and elasticity, dis-
tributed uniformly along its length; and by the bearings at either end. The
bearing fluid film forces consist of a linear spring force which opposed dis-
placements, and a viscous damping force due to velocity. Any externally impressed
journal motion in a given direction gives rise to fluid-film forces which oppose
the motion, both in the direction of the displacement and at right angles to it.

The coordinate bearing forces arising from journal motion are written as

y-d. section: F(Y) KwY + CGwY + KogX + c"‘l*

x-direction: FOO = KX + C,“).( + KwY + Cy,‘i'

The unbalance force may also be resolved into the x- and y- directions. This
allows the usual equations for plane motions to be written for rotor displacements.
The solutions to these equations may be combined to yield the maximum displacements

and forces acting on the rotor.

The purpose of this investigation is to examine the nature of shaft displacements
and transmitted bearing forces which result from shaft unbalance in the system

described, over a wide range of speed.



Béasic Equations and Solutions

Considering motion in the y-direction of Figure (1), the equilibrium of an elemental

length of shaft dz subject only to internal forces is governed by the well-known

equation
4 2
Y wA 3Y
EI 324 + -%- J* = O (1)
The solution to Equation (1) is ot
Y = y(=e (2)

where y(z) is a function of z and independent of t. For the section 0¢Z, €L,
substitution gives

wt (3)
Y, = [A.cos Az, + B,Sn)2 + C, cothAz + D.smh,\z.]e
where )\4 _ 'lu'Aa)"
- gET
and Al’ B1 C1 and D1 are constants of integration to be determined from the end

conditions of the section. For the section O £ Z, € L5 the solution is

Y, = [A09)2+ Bsndz, « Camhdz, + sz ] e )

where A BZ’ 02 and D, are constants of integration.

2’ 2

Similarly, for motion in the x-directicn, the governing equation is

4 a
3X wA dX (5)
EL 32+ * gt ©
For o< 2 <£1L, the solution is

ot
X, = [E@X rFsndz ¢ G sh)z + hsahiz ] e

where El, F. G

1 &1 and Hl are constants of integration and A is as defined above.

For 0O< Z, & L, the solution is

X, = [Biesdz, + Fsndz + G aoshiz, ¢ Hlsmls)\z,]e“t &

where EZ’ Fz, Gz, and H2 are constants of integration.



Evaluation of Constants

The 16 constants of integration may be evaluated by introducing the solutions con~
taining them into the boundary conditions of the system. Adopting the conventions

of Figure 2 allows the boundary conditions to be expressed as follows:

Z =0 ; Y-z pane M) = o (8)

vV(¥)e) = o© (9)

where FONX0) = Ky Yi() + Gy %,(0) + Ky X(©) + Gy Xi(0) (10)

Z = 05 Xz plne M(xXo) = o an

V(X)o) = © ()

where FX0) = Ky X (0)+ Cu 5(5(0) + Ky Yi(0) + Cx Y () (13)

2~ Ly Y-z plane. M(Y,XL;) - O (14)

VOELXL) + FORX(L) = © (1

where F(Y;XL;) = Kyy Y)_(Lz) + Cyy ‘.'2 L) + Ky x;('-x.) + nyi(z(“*)(l(’)

Z= L, y x-2 plane. M(X,_)(L;) = o (17)

V(L) + FOLXL) = © ' t®

where FOOWXL) = KuX() + G Ro(l) + KneYi (1) + Gy Y,(.) (19)

2y*Li: Y-2 plane. Y (L.) = Y, (0) (20)
Z,20: ‘

d;:‘ (Y. XL') = &ézl('gXO) (21)

MEXL) = MMLXO) (22)

-V(Y.XL.) + Mew‘[-ie""*] + V(Y;)(O)= (o) (23)

w o et
where Mew [-Le ] is the y- component of the unbalance force acting at Ll'

2, Lyt x-2 r'ane. Xa (L') - xl(o) @y

wr o £ xXu) = LX) )



M@XL) = M(XXo)
SVXXL) + Mew ™ + V(uXe) - ©

t
where Meaie?' is the x- component of the unbalance force acting at Ll’
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Substituting eqg. (3)-(7) int eqs. (8)-(27), and utilizing the moment and shear

relations
y 2
M) = -EI f—t;; M(x) = - sx‘;{—;‘.
and
4y d3x
v(Y) EI PPt v (0 - €1 37»

allows the 16 basic equations of motion to be obtained.
Expressed in dimensionless form in terms of the integration constants,

tions are as follows:

these equa-

S - o

w(42) -V (§-2) + w(2+9) = ©

t-9) - o

G(E+S) ¢ 4 (5+@) - v (§ -4 - o

A osa, 4 .Z?sin My = & oash i, - %"Smh My = O
ba v Bw e Sy B

+ % [%aohl,_ t Bondy + B onn, 4 ‘_'QSM‘\/\L;] = O

%‘ Wi, + .ngwn M, - @ owh, - % sih Xy = O

k) [% M, + Boandy o % N, + %smh X;]

+E_;-e(9 - %x,, + Ez“" + %dn_ = 0
%'w)v.-. N %SMAL. + S whiy 4 %smk;\L,

- é_:. - % = O

- e st o it IR



in which

v B o, + ég sinh My -2 cosh My
- & Oa
e e
- B sk o+ S cosh My D sinh ML)
e e e
+ A S
e <
- B ooy ¢ % swhaL, % cosh ALy
+ B B
e e
+ EE sndy + D cosh My 5? smh M
- & @
e e
+ Bocosk, + %g Smh Ay, + £$ cosh Ay
- ﬁ Sm/\L' + g’ cosh My %’ sinh Ay
+ B @
e e
RoosX, + & smhl, glCOS“D Moy
. & A
e €
w i. Mew %:
AL = x (a-k) ’ EI?'C }.
4
AL, = Jf'x'(fi )*
_ 4
A, = (-€)x(E)"
ey ok EINC
) = (EEXENE) .
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(28)
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(% ]
5 - el
W
[kwe |, iculn]
w
[+ b

[-Psnil + = cos My |

[ ¥ cos My + o sin )L,_]
[-7 swh My + of ash L, ]

(-7 cosh My, + of smh AL, ]

[-7 sn My + oy cos /\Lz]
[ VY cos M, + 4 Sin )\Ll]
[-7 smh My + oy sk, ]

['7) cosh )Lz + °(4 .sinh M]. ]
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It is convenient to reduce the preceding equations to a set of 6 simultaneous

equations in A1 B1 él bl E1 F1 H1 to facilitate the computer solution which is to

follow. After reducing and simplifying the equations become:

_Ae_\ .- - %tv <+ %o-l) + % 2«2 = O
%‘-20(3 + %‘-2“‘4 - -2.1? + %‘-'V = O
Afask -cmd] + Bsmd - Damhd 4 i (¥)[smin ¢ Smhdy]
= O
% [CoS)«L - CoShN.] + 2 sn A - -“é‘ snh ML ~ (%)[sm)L’_-o- smh )/-zJ
= O

%‘ [0(5054\1., —°“9"1)L; +°(7C°5h)LI +* 0189;"")‘4] + gl [dsan)L, + OQCOSN.,]
+ Bl + wgcosh My ] + Do [asd+ cosh ] + Beysinde + o, s
= (%) [oty (sin My~ b, )~ (-0l
%ds[sh)t.4 SIH\,\LJ + g’«,sin)l. + -3%5"""7“-
+ B [y ashy —iy S0y +.oy Cosh My + Oy sih Ay ] + B [ shhy + decesdty |

[
e
+ g [, sinh X, 4 duasbht,] = (%)[(dn"“u)‘ { o (""'"’-z"‘;"“\“)] (29)

The following expressions exist for the remaining constants in terms of the above
unknowns.

A G
e = e
g.‘ = &
e e



éz. = %. s AL, + %:sm»\l-:

3;: = -%‘sanAL. + %cosM, + i(%)

2 - Awshy + D sih )L,

% = Qawhs Roosn, - (X

E; = ‘:;t s M, + g sin M

'.'-g =-%'Sann.+§as>'-l‘ (%)
6; = B sk + & seh

'!'_z = Eé‘ sinh AL, + Ee:cosh Iy + (%)

(30)

Calculation of Rotor Displacements

In the region o0 € %, % L,

, the respective coordinate displacements are
given by Egqs. (3) and (6).

In order to determine the maximum and minimum values

of whirl amplitude, as shown in Figure 5, these equations must be expressed as
follows:

ot
Ee. 3: Y, = [Aasdz « Bundz + C, % Mz, + me*dz,]e
Expanding the integration constants in terms of their real and imaginary parts
i _
A = A+ LA ; B = ... et
Thus, Y, = Acoswb — B sm wt

where A = A,raas)\z, + Brsm)‘«z, + ¢ anh)z, + B swh Az,

8 = A: c0$)2, + B,‘" sSm)Az, + cf wsh )z, + q‘ sinh )2, (31)

Rejecting the imaginary components gives the above Equations (31)

-14-
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Similarly, for the other cocrainate deflexions:

et
Eq. 6: X, = [E‘,ap);z' + F sin Nz, + G,ush Nz v By Sinh Az,]e“'
E, = E,r+ iE,'; s F o= ... efe
Thus }C‘ = Eeaswt — Fssnawt

where

E E cshz, + F'sindz, + G "eoshdz, + K smh)z,

F = E cos)z + F'sinkz + q,‘ cosh A2, +
' (32)

The axes of the whirl amplitude ellipse may be calculated as follows:

Major axis: a = /é [A’.* B"" 3% F’] + -2|: / [A"&B;+51+F;J‘4 E—AF 4—85] (33)

Minor axis! b = /% [A“‘.gﬂ. EY+ F"]_

L [ [A+B%E+F*]-4 [-AF «BE]*
(34)

Angle between x- axis and major axis of ellipse:

1§AE+BF)
« = 3 ortn [(A‘+B‘-E —F‘)]

(35
Angle between major axis and unbalance force:
_ 1 2(AB + EF)
p - 2 M (A"‘B‘ti‘-F‘) (36)

In the region 0 ¢£2 €L, , rotor displacement amplitudes are given by Egs.

(4) and (7). Operating on these in a similar manner to the above gives:

Y.

Acswt - Basnwt

where

= Al wsdz, + Bisindz, + Cash )z, + D sinh )2z,
Af_ coS A2, + Bishka+ c{ashxy+ Dfsa'nh)d, )

A
B
37)
X, = Eosot - Fenut
. L
E = Ejcwshz, + Rendz + 6,'cash>.z1+ H, sinh 2z,
¢ . ; t . (38)
F = E§ oS A2y + F:sm A2y + é.:coshxzz+ N,SMAZ;
The major axis a, minor axis b, position angle a and phase angle P may again
be calculated by using Egqs. (33), (34), (35) and (36).
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Calculation of Transmitted Force

The force transmitted from the rotor to the bearings due to its motion may be
calculated by evaluating the end shear force acting on the rotor, as this force
is made up of the resultant spring and damping acting at that point. For the

left-hand bearing z, = o, from Eq. (3),

1

V(YXo) - F(XXe)
where ot
V(¥)Xo) = —EI“‘Y@ = - EDD[ASnz -8z, + Cysh)a oDy eeshz, ] €

Rejecting the imaginary components, the dimensionless force in the y-direction

is given by

ke = Acosot - Bsnwt

where

A = -V [Alsndz -8 ws)z + (smhlz, + b."cosh,\z,]
B = -»[alsiz -Blasiz e Cisnhdz s Blashdz] O

Similarly, the force in the x- direction is given by

B e = Ecswt - Fsmat
where We
E = -7 [E."Sm).z, - Flesdz, + g smh)rz, + “.rm“)ﬂ.]
] . , (40)
F o= -9 [ ez - Fasdz + ¢ sz + K ahiz]

Maximum and minimum values of the transmitted force at the left-hand bearing may
also be obtained from the properties of the transmitted force ellipse, described
by Eqs. (34) and (34) as follows:

[ 8 P e g [R5 P ] - 4 [AF+8E]
Fi(wn) = /ﬁ [£+8 s £ F]-L [[AeB v F]- 4 [-AF+BE]"
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For the right-hand bearing Z, = L

2 2’ the transmitted force in the y- direction is
found from Eq. (18)

VEEXL) + F(UXL) = ©

Thus BE - Awswt — Bsnuwt
we
where A = 7 [A;g'n )z, - B:COS_)Z; + C;'Smh)«zl + D:coshkzl]
B= Y [Ai Sh Az, - s’;oosx:, + CESmhAz, + Ditosh)«zt] (41)

Similarly, in the x- direction,

Ke E @swt - Fsnat
we
where E = 7P [E{so‘nXZ,_ - F;a;s)az, - G,"smh)z,. + Keshdz, ]
r= VY [Esindz,- Fesdz, + Gsmhda, ¢ Hashda,] @

Maximum and minimum values of the transmitted force and of the phase angle may
now be obtained using the above constants, by the previously described method.
The above equations have been programmed for computer solution. The program is
given in Appendix B, Computed results for maximum amplitude and maximum trans-

mitted force are shown graphically in Figures (6) to (24).
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RESULTS

General Features of the Results

The results obtained apply to ranges of parameters which identify the performance
characteristics of a high-speed rotor in fluid-film bearings. Also provided is

a maximum of design information. The location of the rotor unbalance on the

shaft determines the modes which may be excited in the motion. The speed, stiff-
ness ratio and bearing eccentricity govern the rotor amplitude and the transmitted
force. Table II, page 19 , lists the unbalance location and amplitude position
or transmitted force location for each of Figures 6 through 23. Two particular
casec have been examined in detail: (a) Midspan (static) unbalance L1 = 0.50 L
and (b) unbalance at L1 = 0.45 L and O 55 L superimposed 180 degrees apart to

give the dynamic unbalance condition. The charts show:

(a) Variation of maximum rotor amplitude at a given station with speed, due
to rotor unbalance
(b) Variation of maximum transmitted force between rotor and bearing with

speed, due to rotor unbalance.

Using the charts and principles discussed in this section, a preliminary high-.
speed rotor design may be established. Final design behavior may be examined
by use of the computer program listed in Appendix 2. The following is a dis-

cussion of certain features.

Unbalance at Midspan

Due to symmetry of the system, only symmetrical rotor modes may be excited.
Examples of these mode shares are given i1 Figs., 26. Amplitude at this
unbalance position is large in all modes. Amplitude at the unbalance position
is shown in Figs. 6 through 8, for eccentricity ratios of 0.2, 0.5 and 0.7
respectively. Amplitude at the bearings is shown in Figs. 9 through 11. Trans-
mitted force at the bearings is indicated in Figs. 19 through 21.

Unbalance at L, = 0.45 L and 0.55 L, Superimposed

This unbalance condition is also associated with large rotor displacements in the
lowest mode. Although the urbalance forces are symmetrically arranged about the

half-span point, the 180 degree phase difference between the forces causes a



Details of System for Unbalance Response Calculations

TABLE I

Unbalance
Fig. No. Position

6 Ll = 0.5L,

7 Midspan

8

9 Ll = 0,51,
10 Midspan

11

12 L1 = 0.45 L
13

14

15 ll = 0.45L
16

17

18 Ll = 0.45L
19 L1 = 0.5L
20
21
22 L1 = 0.451
23
24

Bearing
Eccentricity Ratio

Amplitude Transmitted

Position Force Position

Z1 = Ll‘

Midspan

Z1 =0

left~hand

Bearing

Z1 = 0,25L1

Z1 =0

Left Hand

Bearing

Z1 = L1
21 =0
Left-hand
Bearing
Z1 =0
Left-hand
Bearing

o © © O O
(VR - e R ¥ I

o O O O o o

v NN D NN
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moment to act on the rotor which gives rise to both symmetrical and asymmetrical

modes of oscillation.

Z1 = 0.25L1 is given in Figs. 12 through 14, close to the left-hand journal but

sufficiently on the rotor for the relative response of all modes to be present

These modes are shown in Fig. 27.

Amplitude response at

in the results. Amplitude response at the left-hand bearing is shown in Figs. 15

through 17, and force transmitted at the left-hand bearing is indicated in Figs. 22

through 24. The amplitude versus speed results shown in Fig. 18 indicate the
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displacement response at the unbalance position Z for asymmetrical unbalance.

= L
1 1
Bearing eccentricity is 1 = 0.5. Response for two rotor stiffnesses is shown,

c¢/% = 0.3 and ¢/b = 10.0.

Influence of Eccentricity Ratio n

Each eccentricity value corresponds to a particular Sommerfeld Number (EE%?)(%)Z = 8§.
The relationship for the plain cylindrical bearing is shown in Fig. 25. 1In
calculating any particular rotor-bearing system, it is necessary to first cal-
cuiate the Sommerfeld Number corresponding to the bearing operating conditions.
Using Fig. 25, the eccentricity can be found, corresponding to the bearing L/D
ratio. The eccentricity so found allows the appropriate figures to be selected

for the determination of amplitude and transmitted force.

Influence of Unbalance on Rotor Dynamic Performance

The rotor-bearing system characteristics may be discussed conveniently in terms

of the following seven cases of response results:

1. Midspan amplitude; midspan unbalance. 1Influence of eccentricity ratio.

Figs. 6, 7, 8.

2. Journal Amplitude; midspan unbalance. Influence of eccentricity ratio.

Figs. 9, 10, 11.

3. Shaft amplitude at Zl/l.1 = 0.25; unbalance at LI/L = 0.45, 0.55.
Influence of eccentricity ratio. Figs. 12, 13, 14.

4. Journal amplitude; unbalance at LI/L = 0.45, 0.55. Influence of eccen-

tricity ratio. Figs 15, 16, 17.

5. Shaft amplitude at Zl/L1 = 1, unbalance at LI/L = 0.45. Eccentricity
ratio n = 0.5. Fig. 18.

6. Transmitted force; midspan unbalance. Influence of eccentricity ratio.

Figs. 19, 20, 21.

7. Transmitted force; unbalance of LI/L = 0.45, 0.55. Influence of

eccentricity ratio. Figs. 22, 23, 24.

A number of general conclusions can be drawn from each case, and these are listed

below. The. terms "low speed range," "medium speed range," and "high speed range,"
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are used for convenience and refer approximately to speed ratios,-{%-, 0 to 1.0,
1.0 to 10.0, and 10.0 to 24.0 respectively, Critical speeds are ¢
identified below by reference to these speed ranges, because changes in stiff-
ness parameter and unbalance position influence the modes which may appear in

the motion, and make comparison difficult along conventional lines.

Case A: Flexible bearings serve to:

(1) increase shaft amplitude in the low speed range,
(2) attenuate the fundamental critical amplitude,
(3) cause a critical speed with large amplitude in the medium

speed range.

Rigid bearings tend to:

(1) limit amplitude in the low speed range,
{2) cause a critical with large amplitudes aroundu)/a)c = 1.0
(Rigid bearing critical)

(3) attenuate amplitude in the medium speed range.

Both bearing types tend to:

(1) cause a large critical in the high speed range, with larger

amplitudes in the case of flexible bearings.

The effeEt of increased journal eccentricity is:

(1) increased amplitude in the low speed range for flexible bearing case.
(2) 1increased the medium speed amplitude peak for flexible bearings.
(3) increased the number of small amplitude peaks throughout the speed

range, for both bearing types.

Case B: Flexible bearings tend to:

(1) increase journal amplitude in the low speed range,

(2) cause a large amplitude critical in the medium speed range,

Rigid bearings tend to:

(1) 1limit amplitude ir the low speed range,



(2) attenuate amplitudes in the medium speed range.

Both bearing types tend to:

(1) give similar amplitudes around wﬁmc = 1,0,
(2) give a critical in the same area in the high-speed range, with
larger amplitudes in the case of flexible bearings.

The effect of increased journal eccentricity is:

(1), (2), (3) same general effect as in Case A,
(4) decreased the low and medium speed attenuation in the case of rigid

bearings.

Case C: Flexible bearings tend to:

(1) 1increase journal amplitudes in the low speed range,
(2) give a large critical in the medium speed range,
(3) attenuate amplitudes below w/wc = 4,5,

Rigid bearings tend to:

(1) 1limit amplitudes in the low speed range,

(2) cause a critical around wﬁmc = 1.0

Both bearing types tend to:

(1) create large amplitudes in the medium to high speed range,
(2) create a large critical in the highspeed range, with larger
amplitudes for flexible bearings.

The effect of increased journal eccentricity is:

(1), (3) as in Case A, No other major effect.
Cage D: Similar tendencies to Case B occur.

The effect of increased journal eccentricity is:

(1), (3) as in Case A, No other major effect.
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E: Similar tendencies occur with bearing transmitted force to those

which occur with amplitude in Case B,

The effect of increased journal eccentricity is:

(1) Somewhat increased transmitted force in low speed range for

flexible bearings.

F: Flexible bearings tend to:

(1) increase transmitted force in the low speed range,
(2) promote an amplitude build-up in the medium speed range,

(3) give higher over-all transmitted forces throughout the speed range.

Rigid bearings tend to:

(1) limit transmitted force in the low-speed range,

(2) attenuate transmitted force in the medium speed range,

Both bearing types tend to:

(1) give similar force values around w/wc = 1,0,

(2) cause a large increase in transmitted force in the high speed
range, with highest values for flexible bearings,

(3) sustained high transmitted forces beyond high speed critical.

The effect of increased journal eccentricity is:

(1) As in case E.

Consideration of the above list reveals certain consistent tendencies which appear

in all cases. These may be explained as follows:

(a)

increased bearing flexibility tends to limit rotor amplitude in the low
speed range, This is due to the normal attenuation which accompanies
any system flexibility and more effective use of squeeze-film damping
effects in the clearance. The critical speed is decreased because of
the added system flexibility. The upper limit of the fundamental
critical speed is the rigid bearing case, u)/cuc = 1.0,
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(b) Attenuation in the medium speed range is a normal condition for opera-
tion beyond the rigid bearing critical speed of any elastic rotor. In
the flexible bearing case, there is some attenuation beyond the first
low-speed critical. This critical is predominantly a bearing flexi-
bility, rigid-body effect. The amplitude peak in the medium speed
range is the second system critical. It includes both bearing
flexibility effects and shaft flexure effects,

(c) The high speed critical occurs at approximately the same speed ratio for
all stiffnesses because here the bearings are effectively rigid and

the rotor oscillates as a pinned-pinned beam in the third harmonic mode.

(d) An increase in the number of small amplitude peaks.for operation at
higher eccentricity ratios occurs because the respective stiffnesses
in the x and y directions of both bearings become significantly
different with increase in journal eccentricity. This tends to give
rise to two critical speeds, each associated with a particular coordinate

stiffness.

Bearing Attenuation

Figures 19 through 24 indicate that greater attenuation of transmitted force is
achieved by using a flexible rotor in relatively stiff bearings throughout the

low and medium speed ranges.

For symmetrical unbalance the transmitted force for a rigid-bearing flexible-
rotor system C/& = 0.3, is often an order of magnitude lower than for a flexible-
bearing rigid rotor system. For both systems the transmitted force is of com-
parable magnitude in the high speed range, except at the high speed critical peak.
For unsymmetrical unbalance, the same general result occurs, but to a somewhat

lesser degree.

In the low speed r ange, operation at a bearing eccentricity of 0.5 gives the
greatest attenuation of transmitted force, for both unbalance conditions. At

this eccentricity the decrease is in the order of 15 to 20 percent over the other
eccentricities. For the medium speed range, the attenuation obtained in the flex-
ible bearing rigid-rotor case appears to increase with increase in eccentricity,

while in the rigid-bearing flexible-rotor case the attenuation decreases with
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increase in eccentricity. In the high speed range, the degree of attenuation ob-
tained depends on both the nature of the unbalance and on the type of system, but

the general result is that operation at an eccentricity of 0.5 promotes the most
likely condition for obtaining good attenuation of transmitted force. In this

case, specific results should be obtained from the curves themselves.

In general, the results indicate that the operating eccentricity at which the
maximum attenuation of transmitted force occurs depends on the stiffness ratio of
the system, the nature of the unbalance and on the speed of operation. In the
low speed range 7N = 0.5 gives the greatest attenuation, but for higher speeds
this simple rule does not apply, and the curves must be used to select the operat-
ing eccentricity, and to examine how the run-up and run-down transmitted force

characteristics will be influenced by change in eccentricity with speed.

Comparison With Other Results

The results of the present investigation were verified against those given by

a proven existing computer program. This other program was based on the, Myklestad-
Prohl method of beam analysis, in which the rotor is divided into a specific
number of discrete masses, separated from each other by flexible members which
represent the rotor elasticity. The program includes the fluid-film bearing
properties as spring and damping coefficients in both the x- and y-directions in
the same manner as described in this report. The results of this comparison are
shown in Figure 28. It will be seen that the agreement is very close in all
cases. This existing program could have obtained all the results given herein,
but the computing time involved would have become increasingly greater for the
higher modes. The present analysis takes the same computing time whatever the
mode, and the results obtained are exact and independent of the number of ‘discrete

masses into which the rotor is divided.

The results obtained were also compared with those given in the earlier investi-
gation, References 1 and 2. No satisfactory correlation was obtained in either
case, for a number of reasons. The single disc rotor of Reference 1 has its mass
and unbalance concentrated at a single point. When the mass is 'distributed' across
the span for comparison with the present work, the unbalance is, in effect, dis-

tributed also. This changes both the magnitude and nature of the disturbing force,
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and so changes the rotor response. No meaningful comparison was achieved in this
case. A similar condition occurred when a comparison was attempted with Reference
2. Rotor mass and unbalance are again concentrated at discrete points and so the
problem of distribution again arises. This instance is more complicated as the
properties of the first and second critical speeds are obtained uniquely for
either case from the equations, by adjusting the nature of the unbalance and its
position. This gives results which are properties of that mode alone. Static
and dynamic response results cannot be superimposed into an overall effect. Both
types of result arise naturally in the present analysis. Also, the results given
herein apply for circular cylindrical bearings, whereas the results of Reference
2 apply to the 150 degree partial arc bearing. In operation the dynamic proper-
ties of both bearing types are quite similar due to the presence of cavitation in
the cylindrical fluid film. This means that the present resultsmay be used to
obtain a fair indication of the performance of an elastic rotor in partial arc

bearings as well.

The results of comparison with other data are that excellent correlation was found
where the rotor and its operation was simulated exactly, using a computerized
discrete-mass approach and that no direct comparison was obtainable with other
published work because an adequate numerical comparison between the operating
unbalance condition, the rotor mass distribution, and the mechanism of modal

excitation could not be made.



-27-

Mode Shapes

Symmetrical Unbalance

Figure 26 applies to the operating conditions shown in Fig. 7, C/8 = 10.0 and
n =0.5. The five mode shapes correspond to major features of that curve. Local
amplitude peaks occur at speed ratios of 0.6, 2.25 and 12.0. Local minima occur

at 1.50 and 9.0. Figure 26 indicates che rotor form under these conditions.

The damping introduced by the bearings serves to limit the peak amplitudes, and
to increase the magnitude of the attenuation which may be realized between
critical speeds. This is evident from the amplitude scales shown, and also from
Fig. 7. The heavily attenuated low-speed critical at u.)/u)c = 0.60 is mainly
composed of rigid body shaft displacement within the bearings, with a slight
amount of bending. At aVuE = 1.50 the local maximum attenuation occurs, but the
increased speed effects plus the high stiffness and damping present hold the
amplitude to two-thirds of the first crtical amplitude at midspan, and give rise

to amplitudes at the ends which are greater than those of the first critical.

The increased bending associated with higher speeds is clearly shown in the
second critical speed mode shape at w/wb = 2.25. This mode is similar in form to
the fundamental free-free vibration of a uniform beam. The resulcs show that
flexible shafts tend cowards pinned-pinned beam modes, while rigid shafts tend
toward free-free modes, because for a flexible shaft the bearings control the
motion, whereas in the latter case, the shaft properties alone determine its

modal form.

A second attenuation trough occurs at w/cnc = 9.00. Amplitude at midspan is
small, but elsewhere it is of moderate size with a maximum at the ends of 4.2.
The third critical occurs at uﬂa% = 12.00. The motion is almost wholly bending,
and the form corresponds to the third mode of a free-free beam. The speed-

dependent forcing promotes the large amplitudes which are indicated.

In this instance, the symmetry of the system and its excitation do not allow

motions with asymmetrical modes to occur.

Asymmetrical Unbalance

The influence of dynamic moment unbalance on the previously discussed operating
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conditions, ¢/ = 10.0 and 4 = 0.5, is shown in Fig. 27. Figure 13 indicates the
amplitude response. The low speed rigid-body critical speed occurs at wﬂnc = 0.9,
The motion is mainly translation with some rocking and no bending. This speed
constitutes a 50 percent rise over the previous unbalance case, but there is
significant decrease in amplitude level, There is very little bending present

in this mode. At wﬁnc = 3.Q, an attenuation trough exists., The mode shape here
is similar to the free-free beam fundamental., The second critical speed occurs
at wﬁmc = 6.0. This corresponds to the second free-free beam modal form, and

the increased existing force again begins to promote large amplitudes with the
higher speeds. This mode is almost wholly bending. The third critical speed
occurs at w/wc = 20.0, accompanied by even higher amplitudes, with a shape
corresponding to the fourth free-free beam mode. There is an order of magnitude
amplitude decrease within the intervening trough between criticals, which means
that between wﬂ»c = 5,0 and 25.0 midspan amplitudes never decrease below (x/e)

= 1.0 and are usually much larger for most of this range. Modal form within the
amplitude trough was not determined, but is is likely that it would be similar to
the third free-free beam mde, considering the above-mentioned sequence of free-

free beam forms.

The moment unbalance tends to give rise to even free-free modes more readily than
to the odd modes. These latter tend to occur in the amplitude '"troughs', which
themselves are often associated with large amplitudes, probably because they

contain suppressed criticals.
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CONCLUSIONS

1. A study has been made of the dynamic behavior of an unbalanced elastic rotor
supported in damped fluid-film bearings. Extensive numerical results have
been obtained for amplitude response and transmitted force, over wide ranges

of speed, system stiffness and bearing operating conditions.

2. The results indicate that rotor motions are largely determined by the inter-
action between rotor stiffness and bearing stiffness; and by the type of

unbalance, force or moment, which is present in the system.

3. A flexible rotor tends to vibrate in modes which are determined by the
rigidity of the bearings, i.e., as a pinned-pinned beam. A rigid rotor
vibrates as a rigid body at low speeds, but where bending effects predominate,

its motions are similar to those of a free-free beam.

4. Symmetrical unbalance excites only those modes which are symmetrical about
midspan. Unsymmetrical or moment unbalance excites mainly motions which are

unsymmetrical about midspan, and suppresses the symmetrical motions somewhat.

5. The operating eccentricity corresponding to maximum transmitted force attenua-
tion depends on the stiffness ratio of the system, the nature of the unbalance,
and on the speed of operation. In the low-speed range 7 = 0.5 gives the
greatest attenuation, but for higher speeds this simple rule does not apply
and the curves given herein must be used to select the condition of optimum

operation.

6. The results obtained may be used directly as a guide towards a preliminary
design. The performance of the final design may be obtained by using the

computer program listed herein.

7. Correlation between the results obtained herein and those given by a com-

parable computer program of known accuracy has been demonstrated.
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APPENDIX A. Notation for Spring and Damping Coefficients

Reference 1 lists the dimensionless bearing stiffnesses as:

K K K K
XX Xy yx_ LY
l‘ND l-hw l'N» L D
c c c c
where K

%’ ny, ny, K.yy are the bearing stiffness coefficients in the xx, xy,

yx and yy directions respectively.
c is the bearing clearance and
o = §¥‘ where S = Sommerfeld Number

and W, = bearing load.

Similarly the dimensionless bearing damping is given as

wC wC wC
XX Xy yx vy
;ND L Aw i AW 1 Ao
c c c c
where C__, C , C , C are the bearing velocity damping'coefficients in the
xx’ xy’ “yx’ yy

XX, Xy, yx and yy direction respectively.

Notation used differs bet :en References 1 and 2 respectively, and in the present

report. For ease of comparison the following table has been prepared.



TABLE II

Comparative Listing of Symbols Used for Stiffness and Damping Coefficients

Lund and Sternlicht (1) Warner and Thoman (2) Present Work
Kox cxy/w Ko x
K CK /W K

Yy X yy
- K CcD /W K
Xy y Xy
- K -CD_/W K
yx X b 2.3
Cxx CByym/w Cxx
C CB__w/W c
yy XX yy
- ny CByxa)/W ny
- ny CBxyw/W ny



C

C

APPENDIX B. Program Details And Listing

650

660

617C

674

675

680

685

688

689

686

MECHANTCAL TECHNOLOGY INCes LATHAMsNeYes ST5-0922  Je MICHAUD
PNO121  VIBRATION ANALYSIS OF A UNIFORM BEAM
DIMENSION SPD(100) sDEFLI15)sDIST(10)sAl6+6)9BL696)sC(6)9D(6)
DIMENSION E(12+12)sF(12)s1PIVO(12)+PIVOT(12)92EEL(10)+2EE2(10)
READ 743
READ 710s SXXsSXY»SYXsSYY
READ 71Us DXXsDXYsDYXaDYY
READ 727 NSPDsNDEFLsNDISTsNZEELsNZEE2+INPUTsNDIAGINZ
D0 650 JJ=1sNDISTs5
READ 730s DIST(JJI) sDIST(JI+1)sDIST(JI+2)9DIST(JI+3)sDIST(II+4)
DO 660 MM=14+NDEFLs5
READ 730+ DEFL(MM) sDEFL (MM+1) sDEFL (MM+2) »DEFL (MM+3) s DEFL (MM+4)
DO 670 11=1sNSPDs5
READ 730s SPD(I1)sSPD(II1+41)sSPDII142)+SPDIII+3)sSPDI1I+4)
IF (NZ) 687+6744687
IF (NZEE1) 67596759680
READ 735+2EE2(1)
NNN=2
KFORK=1
ZEE=2EE2(1)
GO TO 690
00 685 I=1sNZEE1s5
READ 730Us ZEE1(1)9ZEEL(I41)sZEELI(I42)9ZEEL(I+3)9ZEEL(I+4)
IF (NZEE2) 688+688+689
NNN=1
KFORK=1
ZEE=ZEE1(1)
GO TO 690
DO 686 I=13NZEE245
READ 730+2EE2(1)92EE2(1+1)92EE2(142)92EE211+3)92EE2(1+4)

KFORK=2



687

690

691

692

695

805

810

GO 10O

690

READ 730y Z122+2EE

KFORK=

NNN=1
WRITE
WRITE
WRITE

WRITE

1

ouUTPUT
QUTPUT
ouUTPUT

QUTPUT

TAPE

TAPE

TAPE

TAPE

DO 900 JJ=19sNDIST

DO 910 MM=1sNDEFL

GO 70
WRITE
WwRITE
WRITE
WRITE
GO 10
WRITE

WRITE

(691+692) sy KFORK

ouTPUT
OUTPUT
QUTPUT
OUTPUT
695

OUTPUT

QUTPUT

3

3

3

3

162
743
7409 SXX9SXYsSYXeSYY

T4ls DXXsDXYsDYXeDYY

TAPE 39 744

TAPE
TAPE

TAPE

TAPE

TAPE

DO 920 I1=1sNSPD

GO TO (810U»805) +KFORK

3

3

3

3

T45

T46s DIST(JJ) sDEFL(MM) sNNN»2EE

T47

751

145

WRITE QUTPUT TAPE 34 7529 SPD(II)eDIST(JJ)+DEFLIMM)

WRITE OUTPUT TAPE 3, 780

DIST2=10~-DIST(IN)

VAR1=341415927*#SQRTF(SPD(11))

ARG1=DIST{JJ)#VAR]

ARG2=DIST2¥%VAR1

GNU=0¢257021%DEFL(MM) #SPD ([ 1) %*VAR1

VAR2=COSF (VAR])

VAR3=SINF (VAR1)

VAR4=COSF(ARG])

VARS5=SINF(ARG1)

-3h-



_35_
VAR6=COSF (ARG2) |
VAR7=SINF (ARG2)
VARS=EXPF (VAR])
VARB=(VAR9+10/VAR9) /240
VAR9=(VAR9-1e0/VAR91 /240
VAR11=EXPF(ARGL)
VAR10=(VAR11+1e0/VAR11)/2.0
VAR11=(VAR11~10/VAR11)/240
VAR13=EXPF(ARG2)
VAR12={VAR13+1.0/VAR131/2.0
VAR13=(VAR13-1e0/VAR13)/240
AFR5=-GNU#*VART+SYY*VAR6
AFI5= DYY*VAR6
AFR6= GNU¥VARG6+SYY*VART
AFl6= DYY*VAR?7
AFR7=-GNU*VAR13+SYY¥*VAR12
AFl17= DYY*VAR12
AFRB=-GNU¥VAR12+SYY#*VAR13
AF18= DYY#VAR13
AFR9=-GNU#VART+SXX*VARG6
AF19= DXX*#VAR6
AFR10=GNU*VARG6+SXX*VART
AF11C= DXX*VAR7
.AFRl1=—GNU*VAR13+SXX*VAR12
AFIl1l= DXX*VAR12
AFR12=~-GNU¥*VAR]1 2+SXX#VAR13
AF112= DXX*VAR13
THA4=VART+VAR13
THA7=VAR7-VAR13
A(lsl)=2.0%5YY

A(l92)=-GNU



Al(1+3)=GNU

Alls4)=240%5YX

A(195)=040

Alls6)=0e0

A(291)=240%5XY

Al2+2)=0e0

A(2+31=040

A{2+4)=240%5XX

Al(2+5)==GNU

A{2+6)=GNU
A{3+1)=VAR2~-VARS
Al(342)=VAR3

A(343)=-VARS

A(3+4)=040

A(34+5)=040

A(34+6)=0.0

Al4s1)=040

Al4s+2)=060

Al493)=040
Al4y4)=VARZ2-VARS
Al44+5)=VAR3

Al4+6)=-VARS
A(54]1)=AFR5#VAR4~AFR6%*VARS+AFRT#VAR10+AFRB8#VAR11
A(592)=AFR5*VARS+AFR6%*VARY
A(593)=AFRT*VARL11+AFRB*VARLO
A(5+4)=SYX*(VAR2+VARS)
A(5+5)=SYX*VAR3
A(5+6)=SYX®*VARS

Al6+1)=SXY #({VAR2+VARS)
A(692)=SXY *VAR3

A(693)=5SXY #VAR9



Al6s4)=AFRIVAR4-AFRIO*VARS+AFR11%#VAR10+AFR12%VAR]]
A(6+5)=AFRI*VARS+AFR]10*VARYL

Al696)=AFR11%#VAR]11+AFR12#VARI1O
B(lsl)=24s0%DYY

B(1+2)=040

B(1s3)=0e0

B({1s4)=240%DYX

Bt145)=040

B(1+6)=040

B(291)=240%DXY

B(2+2)=040

B(2+3)=040

B(294)=2.0%DXX

B(2951=040

B(2+46)=040C

B(3+1)=0.0

B(3+2)=0.0

B(3+31=040

B(3+s4)=0.0

B(3+5)=060

B(3+6)=0s0

Bl4s1)=0e0

B(4+2)=040

B(4+3)=040

Bl4s4)=0e0

B(495)5040

B(496)=0e0
B(5+1)=AFI5*%VAR4~AF 1 6*VARS+AFI T#VAR10+AFI8%#VAR]11
B(5+2)=AFI5*VAR5+AF 1 6*#VARY
B(5+3)=AFI7#VAR11+AFI18%#VAR]O

B(5»4)=DYX#(VAR2+VARS)



B(5+5)=DYX*¥VARS3

B(5+6)=DYX*VARS

Bl6&s1)=DXY *(VARZ+VARS8)

B(6+2)=DXY *VAR3

B(6s3)=DXY *VARS
B(6s4)=AF19%VARG—-AF]10%VARS+AF 1 11*%VAR]IO0+AFI12%#VAR]1
B(6+5)=AFI9%*VARS+AF]10*VAR4

B(6+s6)=AFI]11#VAR]I1+AFT12%#VAR1O

C(1)=0Ge0
C(2)=040
C(3)=0.0

Cl4)=0 5% VAR]1 *THAL
C(5)=0e5*VARLI®*(THAT%SYX + (AF16-AF18))
ClE6)=0s5%¥VARL®((AFR10~AFR12)+THAT*DXY)
D(1)=0eG
D(21=0e0
D(3)==0e5%#VAR1*THA4
DE4a)=0e60
D(5)=0e5*VARI*#(THAT*DYX - (AFR6-AFR8))
D(6EI=0e5*VARI*¥ ((AFI10-AF112)-THAT%S5XY)
[FINDIAG) 941549
DO 11 I=1+6
WRITE OUTPUT TAPE 3y 7919A(I191)sA(1+2)9A(I93)sAl1s4)sA(195)9A(1+6)
DO 13 I=1+6
WRITE OUTPUT TAPE 3y 791sB(I1s1)9B(192)9sB(I93)9sB(1s4)sB(195)9B(1+6)
WRITE OUTPUT TAPE 39 791 C(1)sC(2)9C(3)sCL4)»C(5)9CL6)
WRITE OUTPUT TAPE 35 791 D(1)sD(2)sD(3)sD(4)sD(5)sD(6)
THIS PROGRAM SCLVES A SYSTEM OF LINEAR EQUATIONS AX=B
WHERE THE VARIABLES ARE COMPLEX
A=MATRIX OF REAL PART OF THE COMPLEX SYSTEM

B=MATRIX OF IMAGINARY PART OF COMPLEX SYSTEM



(&)

)
3

C=COLUMN VECTOR OF THE REAL PART OF THE RIGHT-HAND VECTORS
D=COLUMN MATRIX OF THE IMAGINARY PART OF THE RIGHT-HAND VECTORS

THE UNKNOWN COLUMN MATRIX X IS STORED IN C AND D

15

10

12

14

16

18

22

20

C BEING THE RtAL PART AND L THE
N=6
DO 1V I=1sN
LO 10 J=1sN
E(lsJ)=AL]sJ)
LL=N+1
LM=2#%N
DO 12 I=1»N
DC 12 J=LLsLM
K=J=N
E(lsJ)=~B(1sK)
DO 14 I=tLLsLM
D0 14 J=1sN
KK=1=N
E{TI+J)=B(KKsJ)
DO 16 I=LLsLM
DO 16 J=LLsLM
K=J-=N
KK=1=N
E(l9J)=A(KKsK)
DO 18 J=1»sN
FtJry=Cts
DO 22 J=LLsLM
K=J=N
F(J)=D(K)
N=LM
DO 20 J=1sN

IPIVO(J)=0

IMAGINARY PART



60

80

62

64

65

67

85

100

105

140

240

DO 550 I=1sN

SEARCH FOR PIVOT ELEMENT

AMAX=0Ue0

DO 105 J=1sN

IF (IPIVO(J)-1) 60s105+60
DO 100 K=1»sN

IF (IPIVO(K) ~1) 80s 100s 600
IF (AMAX) 62+63463
AMAX=~AMAX

IF (ECJsK)) 64965465
TOOT==E(JsK)

GO TO 67

TOOT=E(JsK)

IF (AMAX~TOOT) 85491005100
TROW=J

IcoLy =K

AMAX=E(JsK)

CONTINUE

CONTINUE

IPIVO(ICOLU)Y=IPIVO(LICOLU)+]

INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL

IF (IROW-ICOLU) 140s 260 140
DO 200 L=1»sN

AMAX=E(IROW,sL)
E(IROWsL)=E(ICOLUL)
E(ICOLUsL)=AMAX

AMAX=F ( IROW)

-40-

F4020015
F4020016

F4020017

F4020030
F4020031

F4020032



260

350

400

450

550

600

641

645

F{IROW)=F(ICOLU)
F{ICOLU)=AMAX

PIVOT(I)=ELICOLUsICOLU)

DIVIDE PIVOT ROW BY PIVOT ELEMENT

E(ICOLUICOLU)=10
D0 350 L=1»N
E(ICOLUSL)=E(ICOLUSL)/PIVOT(])

FCICOLUY=F(ICOLU/PIVOTI(I])

REDUCE NON-PIVOT ROWS

DO 550 L1=1sN

IF(L1-ICOLU)Y 400s 5509 400
AMAX=E(L1sICOLU)
E(L1+1COLU) =040

DO 450 L=1sN
E(LLsL)=E(L1sL)-E(ICOLUsL)*AMAX
F(L1)=F(L1);F(ICOLU)*AMAX
CONTINUE

N=N/2

DO 641 J=1,N

Cthr=F(J)

DO 645 J=LLLM

K=J=N

DIK)=F(J)
CSR2=C(1)*VAR10+4C(3)®#VAR11
CS12=D(1)*#VAR10+D(3)*VAR]1
GSR2=C(4)*VAR10+C(6)*VAR]1

GS12=D(4)*#VAR10+D(6)%*VAR]11

q

F4020048
F4020049

F4020050

F4020057
F4020058

F4020059



643

644

810

811

812

DSR2=C(1)*VAR11+C(3}#%#VAR1O
D312=D(1)1*VAR11+4D(3)%VAR10~045%VAR]
HSR2=C(4)*¥VAR11+4C(6)%¥VAR10+0e5%VAR]
H512=D(&4)*VARL11+D(6)#VAR]LO
ESR2=C(4)1*VAR4+C{5)*VARS
C512=D(4)*VARL+D(5) #VARS
FSR2=-C(4)*VARS+C{5)*#VAR4-0«5%VAR]
FSI2=-D(4)*%VARS+D(5)*VARY
ASR2=C(1)%*VAR4+C(2) *#VARS
ASI2=D(1)%¥VAR4G+D(2)*VARS
BSR2=-C(1)*VARS+C(2)%¥VAR4
BS12=-D(1)¥VARS+D(2)*¥VAR4+0+5%VAR]

[F(NDIAG) 64396449643

WRITE OQUTPUT TAPE 3,

WRITE OUTPUT
WRITE OUTPUT
WRITE OQUTPUT

WRITE OUTPUT

TAPE
TAPE
TAPE

TAPE

3

791
791
791
791

791

GO TO (810+812)» KFORK

I[F (NZ) 1500981191500

GO TO (8129830) ¢NNN

DO 2000 I=1sNZEE1

ZAR1=ARGI*ZEE1(])

VAR14=COS5SF (ZAR1)

VAR15=SINF (ZAR1)

VAR19=EXPF (ZAR1)

Cl1)9CL2)9CHL3)0CLAL)»C(S5)eCHH)
D(1)sD(2)sD(3)sD(4)sD(5)9DI(6)
CSR2+CSI29GSR29GS129DSR24DSI2
HSR2yHSI129ESR2+ESI29FSR29FSI12

ASR29AS12+BSR2eBSI2

VAR18=(VAR19+10/VAR19)/2¢0

VAR19=(VAR19-140/VAR19)/240

FI11=VAR14+VAR18

ARL1=C(]1)*(

BI1=D{1)%(

FI1

FIl

)+C(2)%*VAR15+4C(3)*#VAR]19

1+D(2)*VAR15+D(3)*#VAR19

4o-



ER1=Cl4 ) *( Fll )+C{5)*VAR15+C(6)*VAR19
F11=Dl4)%*{ F11 )+D(5)*VAR]IS+D(6)*VAR19
SUBLI=ARI#*2+BI 1 ¥%#24+ER1*%2+F ] ] ¥¥*2
SUB12=+ER1*BI1-FI1¥AR1
SUB13=ER1%AR1+F]11%B11
SUB14=~ER1#%2-F 1 ##24AR#%2+B] [ ##2
SUB15= ER1*F]1+AR1#BIl1
SUB16=ER1*#¥2-F]1#*#24+AR1¥%#2-B]1%*¥*2
AMAXX=SQRTF(SUB11%#%2-4,0#S5UB12%%2)
AMAX1=SQRTF (0«5%#5SUB11+0e5*¥AMAXX)
BMIN1=SQRTF(0e5%#5UB11-0e5%AMAXX)
OAL1=0e5*%ANG(SUBL14+2.0%*5UB13)
OBL1=0e5*ANG(SUB16+2+0%50U815)
I[F (ZEE1(1)) 91149124911

911 AMAX=AMAX1
BMIN=BMIN1
OAL=0AL1
oBL=08L1
GO 10 950

912 FARLI=GNU*(C(2)-C(3))
FBI1=GNU*(D(2)-D(3))
FER1=GNUX(C(5)-C(6))
FFI1=GNU*(D(5)~-D(6))
FS Bl1=FERI*¥2+FF 1 #%2+FAR1##2+4FB]1%#%2
FS B12=FER1#*#FBI1-FFI1#FAR1
FSB13=~FERLI#%#2-FFI1#%2+FARLI##2+4FB 11 %%#2
FS Bl4=FER1*FAR1+FFI1%*FBI1
FMAXX=SQRTF(FSB11##2-4,0%FS5B812%%*2)
FMAX1=SQRTF(O«5*FSB11+0e5#FMAXX)
FMINLI=SQRTF(Ce5*FSB11-0e5#FMAXX)

FALF1=0e5%#ANG(FSB13+2.0%FSB14)



STYT.
AMAX=AMAX1
BMIN=BMIN1
OAL=0AL1
0BL=0BL1
FMAX=FMAX]
FMIN=FMIN1
FALF=FALF1
GO TO 960

950 GO TO (902+909) sKFORK

902 WRITE OUTPUT TAPE 39 7499 SPD(I1)9sAMAXsBMINSOAL »OBL
GO TO 2000

909 WRITE QUTPUT TAPE 3+ T68+sZEE1(I)sAMAXBMIN»OAL»OBL
GO TO 2000

960 GO TO (922+928)s KFORK

922 WRITE QUTPUT TAPE 39 7709 SPD(I11)sAMAXsBMINSOAL»OBL 9FMAXFMINsFALF
GO TO 2000

928 WRITE CQUTPUT TAPE 39 7729 ZEEL1(I1)9sAMAX+BMINSOALsOBL oFMAXsFMINsFALF

2000 CONTINUE

GO TO (920+830)s KFORK

830 DO 3000 I1=1.NZEEZ2
ZAR2=ARG2*ZEE2(])
VAR16=COSF (ZAR2)
VAR17=SINF (ZAR2)
VAR21=EXPF (ZAR2)
VAR20=(VAR214+10/VAR211/240
VAR21=(VAR21~-10/VAR21)/240
AR2=ASR2#*VAR16+BSR2*VAR17+CSR2*VAR20+DSR2*VAR21
BI12=AS12*VAR16+BSI2*VAR17+CSI2*VAR204DS12*VAR21
ER2=ESR2*VAR16+FSR2*VAR17+GSR2*VAR20+HSR2#VAR21
FI2=ESI2%VAR16+FSI2*VAR]1T7+GS12*#VARZ20+HSI2#VAR21

SUB21=ARZH¥2+BI2¥H2+ERQ*¥H24F [24%2



914

915

SUB22=LR2*B]2~-FI2%*AR2

SUBZ3=ER2¥AR2+F12%B]2
SUB24=-ER2¥¥2F[2# %24+ AR *¥2+8]2%%2

SUB25= ERZ2*FI2+AR2%B12
SUBROTER2**¥2-F 2% *24AR2#%#2-B [ 2#%2
AMAXX=SWURTF(SUB21#%¥2-4,0%5UB22%%2)
AMAX2=S0QRTF(C«5%SUB21+0e5*AMAXX)
BMIN2=SORTF (( «5%#5UB21-0e5*AMAXX)
OAL2=0e¢5%ANG(SUB24+20%50UB23)
OBL2=0e5%ANG(SUB26+240%5UB25)

IF (ZEE2(11-140) 91449159914

AMAX=AMAX2

BMIN=BMINZ2

OAL=0AL2

OBL=0BL2

GO 10O 970

FAR2= GNU*(ASR2*VART7-BSR2*VAR6+CSR2*#VAR13+DSR2%#VAR]2)
FBI2= GNU*(ASI2#VART7-BSI2*VAR6+CSI2#VAR13+DSI2#VARL12)
FER2= GNU*(ESR2*VAR7-FSR2*¥VAR6+GSR2*#VAR13+HSR2#VAR]12)
FF12= GNUX(ESI2¥VART-FSI2*VAR6+GSI2%VAR13+HSI2*VAR12)
FS B2l=FERZ2®%2+FF[2%*%2+F AR2#*2+FBI2%#2

FS B22=FER2*FBI2-FF12*FAR?2
FSB23=-FERZ#*2-FFI2#%2+FAR2R¥2+FBI2#%2

FS B24=FERR*FAR+FFI2#FBI2
FMAXX=SQRTF(FSB21#%#2~440%FSB22%%2)
FMAX2=SQRTF(Q«5%FSB21+0s5*FMAXX)
FMIN2=SQRTF(O«5%FSB21-0e5*FMAXX)
FALF2=0e5*ANG(FSB23+92.0%FS5B24)

AMAX=AMAX2

BMIN=BMIN2

OAL=0AL2



970

972

978

980

982

986

3000

1500

oBL=0BL2

FMAX=FMAX?2

FMIN=FMIN2

FALF=FALF2

GO TO 980

GO TO (972+978) +KFORK
WRITE QUTPUT TAPE 3,
GO TC 300U

WRITE CUTPUT TAPE 3 -
GO TO 300C

GO TO (98299861 KFOR
WRITE OUTPUT TAPE 3,
GC 70 3000

WRITE OUTPUT TAPE 3»
CONTINUE

GO 70 920
ZAR1=ARG1%*Z1
VAR14=COSF (ZAR1)
VAR15=SINF (ZAR1)
VAR19=EXPF (ZAR1)
VAR18=({VAR19+10/VARI]
VAR19=(VAR19-1+0/VAR1
FI1=VAR14+VAR18

AR1=C(1)*( FI1

BIl=D(1)#*( FI1
ER1=C(4)*( FI1
FI1=Dl4)*{ FI1

ZAR2=ARG2*Z2
VAR16=COSF (ZAR2)
VAR17=SINF(ZAR2)

VARZ21=EXPF(ZAR2)

T

749 SPD(I1l)+sAMAXsBMINOAL sOBL

765s ZEE2(1)9sAMAXsBMINSOAL sOBL

K

7709 SPD(II) +sAMAXsBMINSOAL»OBL sFMAXsFMINsFALF

7749 ZEE2(1) sAMAXIBMINIOAL »OBL +FMAXsFMINsFALF

91/240

9)/2e0

)+C(2)*#VAR15+C(3)*VAR19
)+D(2)1#VAR15+D(3) #VAR]19
)+C (51 *#VAR1I5+C(6)*VAR]S

)+D(5)%#VAR15+D(6) *VAR19



1050

VAR20=(VAR21+140/VARZ211/240
VAR21={VAR21-1e0/VAR211/240
AR2=ASR2*VAR]16+BSR2*¥VARL1 7T+(SR2*VAR20+4DSR2%#VAR21
BI2=ASI2%¥VAR16+BSI2*VARL7+CSI2*%¥VAR20+DSI2*VAR21
ER2=ESRZ*¥VAR]16+FSR2*¥VAR1 7+GSR2*¥VAR20+HSR2*VAR21
FI12stO12%¥VAR]16+4FSI2¥VARLI7+GSI2¥VAR20+HSI2%¥VAR21
YY1=AR1-AR2

XX1=811-BIZ2

YY2=ER1-ER2

XXx2=F11-F1I2

SUB3LSYYIR¥24XX] ¥K2+YY2HH24XX2% %D
SUB32=YY2#¥XX]1~XX2%YY]

SUB33=YY2%YY1+XX2%¥XX1
SUB34=—YY2R¥2=XX2%U24+YY ] HH24XX] #%2
SUB35=YY2#XX2+YY1%¥XX]1
SUB3O=YY2RR2_XX2RU2+YY 1 H%#2-XX]%%2
AMAXX=SQRTF(SUB31%#%2-4,0%#5UB32%%2)

AMAX =SQRTF(0«5%SUB31+0e5%AMAXX)

BMIN =SWURTF(0«5%SUB31-0e5*AMAXX)

OUAL =0e5%ANG(SUB344+240%5UB33)

0BL =0+5*ANG(SUB36+2+0%5UB35)

IF (ZEE) 110091050+1100

FAR1I=GNU*(C(2)-C(3))

FBI1=ONU*(D(2)=-D(3))

FER1=GNU*(C(5)-C(6))

FFL1=GNU*(D(S5)-D(6))

FAR2= GNU*(ASR2¥VAR7-BSR2*VAR6+CSR2#VAR13+DSR2%VAR12)

FBI2= GNU®(ASI2%VART-BSI2*#VAR6+CSI2#VAR13+DSI2#VARL2)

FER2= GNU* (ESR2#VAR7-FSR2#%VAR6+GSR2#VAR13+HSR2#VAR12)
FFI2= GNU* (ESI2%¥VAR7-FSI2*#VAR6+GSI2#VAR13+4HSI2#VARL2)

FAR= FAR1-FAR2

47-
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1100

920

910

900

3500

735

743

710

720

730

740

T41

Ta4

745

746

147

FBl= FBI1-FBI2

FER= FER1-FER2

FFl= FFI1-FF12

FSU31=FER¥%2+FF [ ¥¥2+FAR¥¥24+F B[ # %2

FSB32=FER¥*FU]~FF [ *FAR

FSB33=-FER®¥Q=FF [ #%24+FAR®*¥2+F 5| #%2

FSB34=FER*FAR+FF I *FB]

FMAXX=SQRTF(FSB31%¥%#2-4,0%FSB32%%2)
FMAX3=SQRTF(Oe5%FS5B31+0¢5%FMAXX)

FMIN3=SQRTF(Ce5%FSB31-0e5%#FMAXX)

FALF =0+5%ANG(FSB33+2.0%#FSB34)

WRITE QUTPUT TAPE 3s7709SPD(I11)sAMAXsBMINsOAL »OBLsFMAX3sFMIN3sFALF
GO TO 920

WRITE OQUTPUT TAPE 3,749 SPD(II)s AMAXs BMINs OALs OBL

CONTINUE

CONTINUE

CONTINUE

GO TO (1s 29 3500)s INPUT

CALL ENDUOB

FORMAT (E1549)

FORMAT (49H )
FORMAT (4E1549)

FORMAT(815)

FORMAT (5E10e4)

FORMAT (5HUSXX=9E11e596X4HSXY=9E11e596X4HSYX=9E11e596X4HSYY=9E11e5)
FORMAT(5HODXX=9E11e596X4HDXY=9E11e596X4HDYX=9E11e596X4HDYY=E1105)
FORMAT(1H1+38 X30HUNBALANCE AMPLITUDE RESPONSE)
FORMAT(1HO»24X48HALL VALUES TABULATED BELOW ARE DIMENSIONLESS)

FORMAT(1HO»23X13HUNBALe L1/L =9F6e393X13HSTIFFN RATIO=9El1le5s

12X3HZEEs 1291H=4F643)

FORMAT(7THO SPEEDs6X4HAMAX s 8X4HBMIN» 7TXSHALPHA» TX4HBETA » 9X4HFMAX o

-4~



18 X4HFMINs 7TXSHPHASE)

751 FORMAT(1H1933X30HMODE SHAPE FOR GIVEN SPEED)

762 FORMAT (1dl)

752 FURMAT(1IHO21X11HSPD RATIO =+F6e2+4X11HUNBAL L1/L=9sF6e3
14X14HSTIFFN RATIO =9E11e5)

7680 FORMAT(12HO0Z1/L1 22/L.2+4X4HAMAX 98X4HBMINsSXSHALPHA s BXGHBETA»8X4HFM
1AXsBX4HFMINGBXS5HPHACE)

765 FORMAT(6XF5e291XE11e591XE11e591XE11e591XE11e5)

768 FORMAT(1XF542+6XE11e5s1XE11e591XE11e591XE1145)

770 FORMAT(1XF6e292XE11e591XE11e591XE110591XE11e591XE11e591XE11e591XE]
1153

772 FORMAT(1XFS5e296XE11e591XE11e591XE11e501XE110501XE11e591XE110591XE]
115!

774 FORMAT(6XF5e291XE11e591XE11e591XE11e591XE116591XE11591XE110591XE]
1145)

749 FORMAT(1XF6e292XE11e591XE11e5s1XE11e591XEL145)

791 FORMAT(1XE12e691XE12e6691XE12e601XE12e691XE12¢691XE1246)

END
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NOTATION

Area of cross-section of rotor
Whirl ellipse major and minor diameter

Constants of integration, region 1

Bearing clearance
Velocity coefficients for bearing damping

Bearing diameter

Constants of integration, region 2

Modulus of elasticity

Eccentricity of unbalance

Base of natural logarithms, 2.71828....
Force

Gravitational acceleration

Second moment of area of rotor section
=y

Spring coefficients for bearing stiffness
Length of rotor

Length of bearing

Length of regions 1 and 2

Length ratio L1/L

Rotor mass

Coordinate bending moments

Rev/Min

Bearing radius

RNLD [5] 2
Sommerfeld number { W I C
Time
Shear Force
Rotor weight

Static Bearing load, %

~76~



X(2)
x(2)
Y(2)
y(z)

1!

o Q Q

€ &€ F © =1

Weight density
Time-dependent displacement
x-displacement
Time-dependent displacement
y-displacement

Rotor length coordinate

Variables defined in text
Phase angle
Phase angle

Deflexion o£ uniformly loaded shaft,
(.é.)(ﬂél;)
384’ EI

Bearing eccentricity

Bearing attitude angle 2 1/4
wAD
Frequency parameter [gEI

Stiffness parameter,(51x3).(%)

2

3.14159 .
Mass density
Viscosity

Angular velocity rad/sec

Critical speed of uniform rotor in rigid

_ bearings.



